# 引言
在现代应用中,管理和存储聊天历史是一个重要的功能。特别是在需要持久化用户与AI对话的场景中,正确使用数据库工具能极大提高效率。本文将探讨如何使用SQLAlchemy和LangChain来构建一个灵活的聊天历史存储系统。
# 主要内容
## SQLAlchemy简介
SQLAlchemy是一个用于Python编程语言的开源SQL工具包和对象关系映射器(ORM)。它提供了一个完整的SQL工具包和ORM功能,允许开发者通过Python对象来管理数据库。
## 聊天历史管理
我们将使用`SQLChatMessageHistory`类来存储聊天记录。该类支持多种数据库,前提是数据库驱动已安装。
### 安装必要包
首先,确保安装以下Python包:
```bash
pip install -U langchain-community SQLAlchemy langchain-openai
设置数据库连接
SQLChatMessageHistory
需要两个参数:
- Session Id:会话的唯一标识符,如用户名、邮箱或聊天ID。
- Connection string:数据库连接字符串,将传递给SQLAlchemy的
create_engine
函数。
from langchain_community.chat_message_histories import SQLChatMessageHistory
chat_message_history = SQLChatMessageHistory(
session_id="test_session", connection_string="sqlite:///sqlite.db"
)