AVL树
1.AVL树
AVL树又称为高度平衡的二叉搜索树,它能保持二叉树的高度平衡,尽量降低二叉树的高度,减少树的平均搜索长度。
2.搜索树的性质
1)每个节点都有一个作为搜索依据的关键码(key),所有节点的关键码互不相同
2)左子树上所有节点的关键码都小于根节点的关键码
3)右子树上所有节点的关键码都大于根节点的关键码
4)左右子树都是二叉搜索树
如下图
3.AVL树的性质
1)左子树和右子树的高度之差绝对值不超过1
2)树中每个左子树和右子树都是AVL树
3)每个节点都有一个平衡因子,任一节点的平衡因子是0,1,-1(每个节点的平衡因子等于右子树的高度减去左子树的高度)
4.AVL树的效率
一棵AVL树有N个节点,其高度可以保持在,插入、删除和查找的时间复杂度也是
5.AVL树的插入
AVL树在插入的时候不仅要考虑有关搜索树方面的关键码的插入和调整,也要根据平衡因子进行旋转调整高度差
平衡因子的调整:
1)新节点插入在父节点的右边时,父节点的平衡因子+1
2)新节点插入在父节点的左边时,父节点的平衡因子-1
当平衡因子等于2或者-2时,要对当前子树进行旋转
1)右单旋(当新节点插入在父节点的左孩子时)
2)左单旋
3)右左双旋
4)左右双旋
6.AVL树的节点结构
7.后记
写这篇博客的目的只是想要着重写插入新节点时发生的旋转,所以也就之间旋转部分的函数贴出来。
1)右单旋
2)左单旋
3)右左双旋
4)左右双旋
想看完整代码的可以去我的GitHub中查看:https://github.com/zknn/VS2013---Copy/blob/AVL树/AVLTree/AVLTree.h