46、医学图像分割:AMCNet与MedNeXt的创新解决方案

医学图像分割:AMCNet与MedNeXt的创新解决方案

1. AMCNet用于手部骨骼分割

1.1 方法优势

在自动细粒度手部骨骼分割任务中,提出了自适应多维卷积网络AMCNet。与其他方法相比,该方法在有效挖掘困难样本方面具有优势,尤其是能准确识别和分类临床上重要但难以区分的骨骺。此外,它还能有效学习不同类别之间的解剖关系,减少类别混淆的发生,特别是在食指、中指和无名指的指骨分割中表现出色。

1.2 消融实验

为了验证解剖约束损失(Anatomy-Constraint Loss)的效果,在3D UNet和AMCNet上比较了仅使用LossDice以及LossDice和LossAC组合的训练结果。同时,为验证自适应多维特征融合机制的效果,将ACM模块分别修改为仅使用2D和3D卷积块。具体实验结果如下表所示:
| 方法 | DSC↑ | Jaccard↑ | Recall↑ | F1 - score↑ | HD95 (mm) ↓ |
| — | — | — | — | — | — |
| 3D UNet [15] | 0.829 | 0.709 | 0.584 | 0.632 | 0.960 |
| 3D UNet + LossAC | 0.835 | 0.718 | 0.692 | 0.686 | 0.874 |
| AMCNet 3D | 0.887 | 0.797 | 0.787 | 0.648 | 2.705 |
| AMCNet 2D | 0.887 | 0.798 | 0.842 | 0.759 | 4.979 |
| AMCNet 2D⊕3D | 0.894 | 0.8

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值