1. 多模态多属性对比预训练方法
西安电子科技大学团队提出了一种基于多模态大语言模型(MLLMs)的图像美学计算预训练方法。通过构建多模态图像美学属性数据集(包含构图、颜色、光线等标注),结合对比学习优化模型,显著提升了美学评价任务的性能。该方法在六个公开数据集上实现了SOTA结果,尤其在构图分类和美学评分预测任务中表现突出。
原文链接:实验室论文介绍
2. 构图感知的图像美学质量评价模型
2023年提出的专利方法(CN 116342569 A)设计了金字塔式多尺度特征融合模块,分别训练构图质量评价网络和美学质量评价网络,通过构图特征引导美学评分。该方法在测试集上采用评分分布平均化策略,有效减少了标签不确定性问题。
原文链接:专利方法摘要