构图美学评价近两年研究进展总结(2023-2025)

1. 多模态多属性对比预训练方法

西安电子科技大学团队提出了一种基于多模态大语言模型(MLLMs)的图像美学计算预训练方法。通过构建多模态图像美学属性数据集(包含构图、颜色、光线等标注),结合对比学习优化模型,显著提升了美学评价任务的性能。该方法在六个公开数据集上实现了SOTA结果,尤其在构图分类和美学评分预测任务中表现突出。
原文链接实验室论文介绍


2. 构图感知的图像美学质量评价模型

2023年提出的专利方法(CN 116342569 A)设计了金字塔式多尺度特征融合模块,分别训练构图质量评价网络和美学质量评价网络,通过构图特征引导美学评分。该方法在测试集上采用评分分布平均化策略,有效减少了标签不确定性问题。
原文链接专利方法摘要


3. 个性化图像美学评价模型的突破
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AndrewHZ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值