畅通工程续
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 52883 Accepted Submission(s): 19765
Problem Description
某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。
现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
Input
本题目包含多组数据,请处理到文件结束。
每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。
每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。
Output
对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出-1.
Sample Input
3 3 0 1 1 0 2 3 1 2 1 0 2 3 1 0 1 1 1 2
Sample Output
2 -1
import java.util.Scanner;
public class Main {
private static int N; //城市个数
private static int M; //线路个数
private static int a,b,x;
private static int s,t; //终点
private static int map[][];
private static int vis[]; //是否被访问
private static int len[]; //长度
private static int MAX = 100000;
public static void main(String args[]) {
Scanner scanner = new Scanner(System.in);
while (scanner.hasNextInt()) {
N = scanner.nextInt();
M = scanner.nextInt();
map = new int[N][N];
len = new int[N+1];
vis = new int[N+1];
if (N==0&&M==0) {
break;
}
for (int i=0;i<N;i++) {
vis[i] = 0; //所有城市都没有被访问过
len[i] = MAX; //所有路径是无穷大
}
for(int i=0;i<N;i++) {
for (int j=0;j<N;j++) {
map[i][j] = i==j?0:MAX;
}
}
for (int i=0;i<M;i++) {
a = scanner.nextInt(); //顶点
b = scanner.nextInt(); //终点
x = scanner.nextInt(); //路径
if (map[a][b]>x) {
map[a][b] = map[b][a]=x;
}
}
int s = scanner.nextInt();
int t = scanner.nextInt();
//Duskjstra 算法
for (int i=0;i<N;i++) { //城市个数
len[i] = map[s][i];
}
vis[s] = 1; //起点的城市标记为已访问
while (true) {
int min = MAX;
int k = -1;
for (int i=0;i<N;i++) { //寻找下一个城市
if (vis[i]==0&&len[i]<min) {
min = len[i];
k = i;
}
}
if (k<0) {
break; //所有城市被标记完
}
vis[k] = 1;
for (int i=0;i<N;i++) {
if (vis[i]==0&&len[i]>len[k]+map[k][i]) {
len[i] = len[k] + map[k][i];
}
}
}
System.out.println(len[t]==MAX?-1:len[t]);
}
}
}