杭电oj(Java版)——1874 畅通工程续 最短路径问题 Duskjstra算法

畅通工程续

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 52883    Accepted Submission(s): 19765


Problem Description
某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。

现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
 

Input
本题目包含多组数据,请处理到文件结束。
每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。
 

Output
对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出-1.
 

Sample Input
  
  
3 3 0 1 1 0 2 3 1 2 1 0 2 3 1 0 1 1 1 2
 

Sample Output
  
  
2 -1
 
import java.util.Scanner;

public class Main {
	private static int N;	//城市个数
	private static int M;	//线路个数
	private static int a,b,x;
	private static int s,t;	//终点
	private static int map[][];
	private static int vis[];	//是否被访问
	private static int len[];	//长度
	private static int MAX = 100000;

	public static void main(String args[]) {
		Scanner scanner = new Scanner(System.in);

		while (scanner.hasNextInt()) {
			N = scanner.nextInt();
			M = scanner.nextInt();
			
			map = new int[N][N];
			len = new int[N+1];
			vis = new int[N+1];
			
			
			if (N==0&&M==0) {
				break;
			}

			for (int i=0;i<N;i++) {
				vis[i] = 0;	//所有城市都没有被访问过
				len[i] = MAX;	//所有路径是无穷大
			}

			for(int i=0;i<N;i++) {
				for (int j=0;j<N;j++) {
					map[i][j] = i==j?0:MAX;
				}
			}

			for (int i=0;i<M;i++) {
				a = scanner.nextInt();	//顶点
				b = scanner.nextInt();	//终点
				x = scanner.nextInt();	//路径
				
				if (map[a][b]>x) {
					map[a][b] = map[b][a]=x;
				}
			}

			int s = scanner.nextInt();
			int t = scanner.nextInt();

			//Duskjstra	算法
			for (int i=0;i<N;i++) {		//城市个数
				len[i] = map[s][i];
			}

			vis[s] = 1;	//起点的城市标记为已访问
			while (true) {
				int min = MAX;
				int k = -1;
				for (int i=0;i<N;i++) {		//寻找下一个城市
					if (vis[i]==0&&len[i]<min) {
						min = len[i];
						k = i;
					}
				}

				if (k<0) {
					break;	//所有城市被标记完
				}

				vis[k] = 1;
				for (int i=0;i<N;i++) {
					if (vis[i]==0&&len[i]>len[k]+map[k][i]) {
						len[i] = len[k] + map[k][i];
					}
				}
			}

			System.out.println(len[t]==MAX?-1:len[t]);
		}
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值