快速理解强化学习DDPG算法

一、引言

        强化学习(Reinforcement Learning, RL)是一种机器学习方法,通过与环境交互来学习最佳行为策略。DDPG(Deep Deterministic Policy Gradient)算法是一种基于深度学习的强化学习算法,适用于连续动作空间的问题。DDPG结合了策略梯度方法(Policy Gradient)和值函数方法(Value Function),使用深度神经网络(Deep Neural Networks, DNN)来近似策略函数和值函数。

        本文将详细介绍DDPG算法的结构图、算法流程、计算处理过程、主要公式,并给出一个Matlab代码示例和效果图。代码示例将不使用深度学习工具箱,而是使用基本的Matlab函数和自定义神经网络类来实现。

二、DDPG算法结构图

        DDPG算法的结构图如下:

     

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Older司机渣渣威

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值