Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the number of 1's in their binary representation and return them as an array.
Example:
For num = 5
you should return [0,1,1,2,1,2]
.
Follow up:
- It is very easy to come up with a solution with run time O(n*sizeof(integer)). But can you do it in linear time O(n) /possibly in a single pass?
- Space complexity should be O(n).
- Can you do it like a boss? Do it without using any builtin function like __builtin_popcount in c++ or in any other language.
Credits:
Special thanks to @ syedee for adding this problem and creating all test cases.
解一:
class Solution { public: vector<int> countBits(int num) { vector<int>res(1,0); int cnt=0; while(cnt<num) { int sz=res.size(); for(int i=0;i<sz&&cnt<num;i++,cnt++) res.push_back(res[i]+1); } return res; } };
//思路就是求2,3的时候在前面0,1的基础上加一,再求前4,5,6,7的时候在0,1,2,3的基础上加一,以此类推,注意截止条件
解二:
上面从高位入手找出解决办法,还可以从低位入手。‘1’的个数等于除了最低位之外的‘1’的个数加上最低位‘1’的个数,即ret[n] = ret[n>>1] + n%2,具体代码:
class Solution { public: vector<int> countBits(int num) { vector<int> ret(num+1, 0); for(int i=1; i<=num; ++i) ret[i] = ret[i>>1] + i%2; return ret; } };