1 #define _CRT_SECURE_NO_WARNINGS 2 #include <stdio.h> 3 #include <math.h> 4 #include <algorithm> 5 #include <stdlib.h> 6 #include <vector> 7 #include <map> 8 #include <queue> 9 #include <string> 10 #include <iostream> 11 #include <ctype.h> 12 #include <string.h> 13 #include <set> 14 #include <stack> 15 #include<functional> 16 using namespace std; 17 #define Size 55 18 #define maxn 1<<30 19 #define minn 1e-6 20 double a[5]; 21 /* 22 递归能求解的问题是能缩小规模的问题,比如本题,先拿出两个数字算一下,然后数字数减少了1 23 规模缩小了,所以能用递归来求解,,但是要定义递归的意义,本题是,在大小为n 的a[] 数组中通过一定的计算能否得到24 递归的出口就是当n=1 时候如果剩下的数字是24 那么就可以 24 25 要注意 用的函数的是fabs 不是abs 26 同时注意a-b 与b-a a/b 与b/a 是不同的要分开来算 27 */ 28 bool isZero(double x){ 29 return fabs(x) <= minn; 30 } 31 bool solve(double b[], int n){ 32 if (n == 1){ 33 if (isZero(b[0] - 24)) return true; 34 else return false; 35 } 36 double tmp[5]; 37 for (int i = 0; i < n - 1; i++) 38 for (int j = i + 1; j < n; j++){ 39 int pos = 0; 40 double numLeft = b[i];//double 41 double numRight = b[j];//double 42 for (int k = 0; k < n; k++) 43 if(k!=i&&k!=j) tmp[pos++] = b[k]; 44 tmp[pos] = numLeft + numRight; 45 if (solve(tmp, pos + 1)) return true; 46 tmp[pos] = numLeft - numRight; 47 if (solve(tmp, pos + 1)) return true; 48 tmp[pos] = numRight-numLeft;//a-b b-a 49 if (solve(tmp, pos + 1)) return true; 50 tmp[pos] = numLeft*numRight; 51 if (solve(tmp, pos + 1)) return true; 52 if (!isZero(numRight)){ 53 tmp[pos] = numLeft / numRight; 54 if (solve(tmp, pos + 1)) return true; 55 } 56 if (!isZero(numLeft)){//a/b b/a 57 tmp[pos] = numRight / numLeft; 58 if (solve(tmp, pos + 1)) return true; 59 } 60 } 61 return false; 62 } 63 64 int main(){ 65 while (1){ 66 for (int i = 0; i < 4; i++) 67 cin >> a[i]; 68 if (isZero(a[0])) break; 69 if (solve(a, 4)) cout << "YES" << endl; 70 else cout << "NO" << endl; 71 } 72 return 0; 73 }