将公式图片转word公式

本文基本实现的基本思路是:将图片中公式转换成LaTex公式,再将LaTex公式转换为word自带公式 一、图片中公式转换成LaTex公式 1.下载并安装mathpix 2.Ctrl + Alt + M截取公式图片,获取LaTex公式 二、将LaTex公式转换为Mat...

2019-05-09 17:33:04

阅读数 320

评论数 0

win10下C++(VS2015)调用Python3.6(Anaconda)

最近要将神经网络放到编码器中,于是研究了一下C++调用Python的代码。 一、API 主要用到的API如下: /*PyImport_ImportModule: 加载python模块 *szModuleName: 模块名称 *返回值: 成功加载返回模块指针*/ PyObject *PyImp...

2019-04-01 19:33:25

阅读数 312

评论数 0

CNN笔记(CS231N)——强化学习(Reinforcement Learning)

强化学习 我们之前讲了监督学习跟无监督学习,这一讲我们采用一种全新的思路来解决问题叫做强化学习。强化学习的目标是让代理学会采取动作来最大化奖励函数 下面是强化学习的一些例子 我们怎么样对这个问题进行建模呢?我们可以把这个问题看做一个马尔科夫链 目标函数是从头到尾的奖励加权相...

2019-02-24 10:30:21

阅读数 260

评论数 0

CNN笔记(CS231N)——生成模型(Generative Models)

总览 之前我们讲的网络模型都是监督学习,这一讲我们要讲的是无监督学习。以下是本讲的总览 无监督学习与监督学习最大的不同就是我们只有数据,没有任何多余的标注,我们要做的就是学习数据中隐藏的某些结构。而生成模型就属于无监督学习的一种 生成模型 生成模型的目标是给定训练数据,希望能获得与...

2019-02-22 13:34:48

阅读数 178

评论数 0

CNN笔记(CS231N)——网络可视化与理解(Visualizing and Understanding)

网络可视化与理解 神经网络对于我们来说就像一个黑盒子,我们有一对输入输出就能对网络进行训练,而不知道内部究竟发生了什么,于是一些研究者开始研究网络内部究竟学习到了什么特征。以下就是一些常用的网络在第一层的卷积核,代表在输入图像中寻找类似的特征,例如边、角、特定方向的线等等 由于网络第一层的...

2019-02-14 22:11:33

阅读数 114

评论数 0

CNN笔记(CS231N)——图像检测与图像分割(Detection and Segmentation)

图像检测与图像分割 我们之前讲的都是图像分类的问题,在这一讲我们要介绍一些其他的计算机视觉中的问题,例如图像检测与图像分割。我们主要介绍一下四个部分:图像分割、分类+定位、多目标检测、多目标实例分割 语义分类 第一部分是语义分类。我们需要给每个像素都输出一个值,来代表这个像素属于某一个分...

2019-02-14 15:24:00

阅读数 496

评论数 0

CNN笔记(CS231N)——循环神经网络(Recurrent Neural Networks)

递归神经网络 上一讲讲了CNN的架构,那么当我们把时间这个维度考虑进来了以后,我们就得到了递归神经网络(RNN)。RNN的输入输出可以是一对多、多对一、多对多,分别对应不同的应用场景 RNN的核心部分是如下公式,旧状态+当前输入,经过一个函数,得到了新状态,新状态会被送到下一个时候参与运算...

2019-02-13 21:24:49

阅读数 116

评论数 0

CNN笔记(CS231N)——CNN架构(CNN Architectures)

CNN架构 这一讲主要介绍了一些常用的CNN架构,例如AlexNet、VGG、GoogleNet等 AlexNet AlexNet是一个八层的卷积神经网络,它是第一个采用ReLU激励函数的神经网络 由于当时内存限制,在这个网络中,同一卷积层被分为两个部分放在两个GPU中分别计算。在...

2019-02-11 20:01:33

阅读数 193

评论数 0

CNN笔记(CS231N)——深度学习软件(Deep Learning Software)

深度学习框架 我们在使用CNN的时候往往会采用深度学习框架来减小我们的工作量,以下是现在常用的一些深度学习框架 深度学习框架有以下意义 下面让我们来看看如果我们用numpy从头构建一个计算图是怎么样的,我们可以看出它有以下两个问题:不能在GPU上运行以及梯度需要我们手动计算 我...

2019-02-09 16:25:37

阅读数 120

评论数 0

CNN笔记(CS231N)——训练神经网络II(Training Neural Networks, Part 2)

训练神经网络 我们接着上一讲继续,这一讲主要讲的是优化、正则化与迁移学习 高级优化 我们首先来看看传统的随机梯度优化有什么问题,如果损失函数在一个维度上梯度比较小,在另一个维度上梯度比较大,那么这种情况下就会出现沿着梯度小的维度变化缓慢,另一个方向变化迅速,出现如下图这种震荡现象导致收敛缓慢...

2019-02-01 10:46:16

阅读数 56

评论数 0

CNN笔记(CS231N)——训练神经网络I(Training Neural Networks, Part I)

训练神经网络 我们先来看这部分内容的综述,主要介绍了在训练网络中的一些基本方法与基本概念 激励函数(Activation Functions) 首先我们来看看神经网络用的激励函数之间的对比 Sigmoid函数主要有一下三个问题,第一是函数存在饱和区,这部分函数梯度基本为0,导致权重...

2019-01-31 09:41:23

阅读数 90

评论数 0

CNN笔记(CS231N)——卷积神经网络(Convolutional Neural Networks)

卷积神经网络 如今卷积神经网络已经应用到生活的方方面面 我们上次讲了全连接层,全连接层一般作为卷积神经网络的最后一层 卷积层 下面我们来看卷积神经网络中最常用的结构:卷积层。由于输入图片的像素很多,如果我们将每个像素进行全连接的话那我们需要学习十分多的权重,这样不仅需要非常多的...

2019-01-28 09:29:01

阅读数 142

评论数 0

CNN笔记(CS231N)——反向传播和神经网络(Backpropagation and Neural Networks)

反向传播 计算图 由于神经网络结构复杂,我们可以采用计算图的形式来把损失函数表示出来,进而利用反向传播算法计算出损失函数对每个权重的偏导数 以下是具体的一个例子,具体过程就是先利用前向传播求出输出的值,再利用反向传播来求出输出对每个中间量的偏导,再利用链式法则求出输出对输入的偏导 ...

2019-01-25 22:08:25

阅读数 66

评论数 0

CNN笔记(CS231N)——损失函数与优化(Loss Functions and Optimization)

损失函数 我们之前讲了我们对于一张图片,我们对其进行打分,代表它被分为某一类的可能性,那么我们需要建立一个损失函数来对这个分类器的好坏进行衡量 我们定义SVM损失函数有如下形式。SVM只是一个二元分类器,我们将其进行推广到多元的情况,定义了SVM损失函数。我们将正确类的打分与其他类打分做差...

2019-01-24 23:37:33

阅读数 144

评论数 0

CNN笔记(CS231N)——图像分类(Image Classification)

图像分类 如果我们想训练一个图像分类器,我们很难想出一个具体的算法步骤将每幅图片都能正确的分类,那么这种情况下我们可以采用数据驱动的方法,利用机器学习来训练分类器 KNN 一种方法是把全部数据和标签记下来,然后对于一组新的数据,我们去寻找最相近数据的标签作为预测标签 那么我们如何去...

2019-01-23 21:28:13

阅读数 198

评论数 0

机器学习笔记——大规模机器学习(large scale machine learning)

大规模机器学习 大规模机器学习指的是训练样本数量非常大的情况。 随机梯度下降 我们在用梯度下降求解代价函数的最小值时我们每一次迭代都要让所有数据都参与一次运算,因此我们也将其叫做批梯度下降(batch gradient desent),这样带来的运算量将会非常大 为了解决这个问题,我们...

2019-01-01 17:45:19

阅读数 249

评论数 0

机器学习笔记——推荐系统(recommender system)

推荐系统 我们在平时最常见的就是某个网站给你推荐广告,豆瓣给你推荐电影,网易云给你推荐你喜欢的歌,这种系统我们统一称作推荐系统 基于内容的推荐 我们举一个电影打分的例子 我们可以为某一部电影选定特征,不同人对不同的特征有不同的偏爱特性,借此我们可以预测某个人对某部特定电影的打分,输入x...

2019-01-01 12:09:58

阅读数 378

评论数 0

机器学习笔记——异常检测(anomaly detection)

异常检测 当我们需要让一个系统从许多未标注的数据中学习到某些正常的特征,从而能够诊断出非正常的数据,我们把这个过程叫做异常检测 我们要做的就是对于给定的一组特征值,我们输出一个概率,如果这个概率值小于某个临界值,代表数据异常 算法 我们可以采用高斯函数来拟合这个概率值,对于某个特征...

2019-01-01 10:57:06

阅读数 465

评论数 0

机器学习笔记——降维(dimensionality reduction)

降维 目的 我们对数据进行降维的目的有两个:一个是数据压缩,对于数据压缩我们可以大大地节省存储空间 第二就是使得数据可以可视化,我们将多维数据压缩成二维可以供我们更好地观察数据的特征 主成分分析(PAC) 主成分分析法可以将n维的数据降为k维,实际上我们是选取了一个k维的基向量,...

2018-12-18 17:44:26

阅读数 60

评论数 0

机器学习笔记——无监督学习(unsupervised learning)

聚类 之前我们讲到的都是监督学习,下面让我们来看对于无监督学习我们应该如何进行分类呢?无监督学习对应的就是给定的样本点我们不给输出值来进行分类 K-means K-means是一种十分常用的算法,它的过程就是对于给定的K个初始点,首先根据各个样本点到其的距离进行分类,之后将这K个初始点位...

2018-12-18 16:51:23

阅读数 102

评论数 0

提示
确定要删除当前文章?
取消 删除