我们使用尺度不变特征变换( SIFT )和Fast Library for Approx Nearest Neighbor( FLANN )来实现两个图像之间的特征匹配。使用SIFT来找到特征关键点和描述符。使用基于FLANN的KNN匹配器来匹配两个图像中的描述符。我们使用 cv2.FlannBasedMatcher() 作为基于FLANN的匹配器。
步骤
要使用尺度不变特征变换( SIFT )特征检测器和基于FLANN的匹配器实现两个图像之间的特征匹配,您可以按照以下步骤操作:
- 导入所需库 OpenCV、Matplotlib 和 NumPy 。确保您已经安装了这些库。
-
使用 cv2.imread() 方法读取两个灰度图像。指定图像的完整路径。
-
使用默认值初始化SIFT对象, sift=cv2.SIFT_create() 。
-
使用 sift.detectAndCompute() 在两个输入图像中检测并计算关键点' kp1 '和' kp2 '以及描述符' des1 '和' des2 '。
-
创建基于FLANN的匹配器对象, flann = cv2.FlannBasedMatcher() 并使用 flann.knnMatch(des1,des2,k=2) 匹配描述符。它返回匹配项。对匹配项进行比率测试以获得最佳匹配项。使用 cv2.drawMatchesKnn() 绘制匹配项。
-
可视化关键点匹配。
让我们来看一些使用尺度不变特征变换( SIFT )特征检测器和基于FLANN的匹配器匹配两个图像的关键点的示例。
输入图像
我们在下面的示例中使用以下图像作为输入文件。
示例
在本例中,我们使用SIFT算法检测两个输入图像的关键点和描述符,并使用基于FLANN的匹配器和KNN匹配算法匹配描述符,同时应用比率测试以仅查找好的匹配项。我们还绘制关键点和匹配项。
<span style="color:#212121"><span style="background-color:#ffffff"><span style="background-color:#272822"><span style="color:#f8f8d4"><code class="language-python"><span style="color:#999999"><span style="color:#93a1a1"># 导入所需库</span></span>
<span style="color:#cc99cd"><span style="color:#f92659">import</span></span><span style="color:#66d9ef"> numpy </span><span style="color:#cc99cd"><span style="color:#f92659">as</span></span><span style="color:#66d9ef"> np
</span><span style="color:#cc99cd"><span style="color:#f92659">import</span></span><span style="color:#66d9ef"> cv2
</span><span style="color:#cc99cd"><span style="color:#f92659">from</span></span><span style="color:#66d9ef"> matplotlib </span><span style="color:#cc99cd"><span style="color:#f92659">import</span></span><span style="color:#66d9ef"> pyplot </span><span style="color:#cc99cd"><span style="color:#f92659">as</span></span><span style="color:#66d9ef"> plt
</span><span style="color:#999999"><span style="color:#93a1a1"># 读取两张输入图像</span></span><span style="color:#66d9ef">
img1 </span><span style="color:#67cdcc"><span style="color:#f8f8f2">=</span></span><span style="color:#66d9ef"> cv2</span><span style="color:#cccccc"><span style="color:#f8f8f2">.</span></span><span style="color:#66d9ef">imread</span><span style="color:#cccccc"><span style="color:#f8f8f2">(</span></span><span style="color:#7ec699"><span style="color:#e6db74">'car.jpg'</span></span><span style="color:#cccccc"><span style="color:#f8f8f2">,</span></span><span style="color:#f08d49"><span style="color:#ae81ff">0</span></span><span style="color:#cccccc