如何在OpenCV Python中实现基于FLANN的特征匹配?

本文介绍了如何使用OpenCV的SIFT特征检测器和FLANN库来匹配两个图像的特征。通过检测关键点和计算描述符,然后使用基于FLANN的KNN匹配器进行匹配,最后可视化最佳匹配结果。
摘要由CSDN通过智能技术生成

 我们使用尺度不变特征变换( SIFT )和Fast Library for Approx Nearest Neighbor( FLANN )来实现两个图像之间的特征匹配。使用SIFT来找到特征关键点和描述符。使用基于FLANN的KNN匹配器来匹配两个图像中的描述符。我们使用 cv2.FlannBasedMatcher() 作为基于FLANN的匹配器。

步骤

要使用尺度不变特征变换( SIFT )特征检测器和基于FLANN的匹配器实现两个图像之间的特征匹配,您可以按照以下步骤操作:

  • 导入所需库 OpenCV、Matplotlib 和 NumPy 。确保您已经安装了这些库。

  • 使用 cv2.imread() 方法读取两个灰度图像。指定图像的完整路径。

  • 使用默认值初始化SIFT对象, sift=cv2.SIFT_create() 。

  • 使用 sift.detectAndCompute() 在两个输入图像中检测并计算关键点' kp1 '和' kp2 '以及描述符' des1 '和' des2 '。

  • 创建基于FLANN的匹配器对象, flann = cv2.FlannBasedMatcher() 并使用 flann.knnMatch(des1,des2,k=2) 匹配描述符。它返回匹配项。对匹配项进行比率测试以获得最佳匹配项。使用 cv2.drawMatchesKnn() 绘制匹配项。

  • 可视化关键点匹配。

让我们来看一些使用尺度不变特征变换( SIFT )特征检测器和基于FLANN的匹配器匹配两个图像的关键点的示例。

输入图像

我们在下面的示例中使用以下图像作为输入文件。

如何在OpenCV Python中实现基于FLANN的特征匹配?

如何在OpenCV Python中实现基于FLANN的特征匹配?

示例

在本例中,我们使用SIFT算法检测两个输入图像的关键点和描述符,并使用基于FLANN的匹配器和KNN匹配算法匹配描述符,同时应用比率测试以仅查找好的匹配项。我们还绘制关键点和匹配项。

<span style="color:#212121"><span style="background-color:#ffffff"><span style="background-color:#272822"><span style="color:#f8f8d4"><code class="language-python"><span style="color:#999999"><span style="color:#93a1a1"># 导入所需库</span></span>
<span style="color:#cc99cd"><span style="color:#f92659">import</span></span><span style="color:#66d9ef"> numpy </span><span style="color:#cc99cd"><span style="color:#f92659">as</span></span><span style="color:#66d9ef"> np
</span><span style="color:#cc99cd"><span style="color:#f92659">import</span></span><span style="color:#66d9ef"> cv2
</span><span style="color:#cc99cd"><span style="color:#f92659">from</span></span><span style="color:#66d9ef"> matplotlib </span><span style="color:#cc99cd"><span style="color:#f92659">import</span></span><span style="color:#66d9ef"> pyplot </span><span style="color:#cc99cd"><span style="color:#f92659">as</span></span><span style="color:#66d9ef"> plt

</span><span style="color:#999999"><span style="color:#93a1a1"># 读取两张输入图像</span></span><span style="color:#66d9ef">
img1 </span><span style="color:#67cdcc"><span style="color:#f8f8f2">=</span></span><span style="color:#66d9ef"> cv2</span><span style="color:#cccccc"><span style="color:#f8f8f2">.</span></span><span style="color:#66d9ef">imread</span><span style="color:#cccccc"><span style="color:#f8f8f2">(</span></span><span style="color:#7ec699"><span style="color:#e6db74">'car.jpg'</span></span><span style="color:#cccccc"><span style="color:#f8f8f2">,</span></span><span style="color:#f08d49"><span style="color:#ae81ff">0</span></span><span style="color:#cccccc
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值