如何使用OpenCV Python检测车牌?

本文介绍了如何利用Haar级联分类器和OpenCV在Python中检测图像中的车牌。首先,从GitHub下载预训练的Haarcascade分类器,然后通过读取图像、转换为灰度图、初始化分类器、检测车牌并绘制边界框来实现车牌检测。提供了示例代码和输出结果。
摘要由CSDN通过智能技术生成

我们将使用Haar级联分类器来检测图像中的车牌号码。Haar级联分类器是一种有效的目标检测方法。它是一种基于机器学习的方法。

要训练车牌分类器,该算法最初需要大量正图像(带有车牌的图像)和负图像(没有车牌的图像)。分类器会从这些正的和负的图像中训练。然后用它来检测其他图像中的物体(车牌)。我们可以使用已经训练好的haar级联来进行目标检测。

如何下载Haarcascade?

您可以在以下GitHub网址找到不同的Haarcascade:

https://github.com/opencv/opencv/tree/master/data/haarcascades

要下载俄罗斯车牌haarcascade,请单击 haarcascade_russian_plate_number.xml 文件。打开它的原始格式,右键单击并保存。

步骤

要在图像中检测车牌,我们可以按以下步骤进行 –

  • 导入所需库。在以下所有示例中,所需的Python库是 OpenCV 。请确保您已经安装了它。

  • 使用 cv2.im

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值