车牌检测

该博客探讨了在小样本情况下,如何通过数据增强和简单的神经网络结构完成车牌检测任务。实验涉及OpenCV、Tensorflow,使用了1conv+1pool+1fc的网络模型,达到了Recall=0.86,Precision=0.82的效果。数据增强包括旋转和平移,结果显示平移对提升模型泛化性能更有效。
摘要由CSDN通过智能技术生成

                              车牌检测回归任务

任务描述:

1. 随机生成车牌检测图像(即假设车牌区域是蓝色,其余区域是黑色),其中车牌大小是不规则的,并划分训练集和测试集

2. 检测出测试图像中的车牌区域的坐标

解决方法一:可以通过基于OpenCV的方法检测出来此车牌(函数get_plate_four_coord);

解决方法二:基于神经网络进行回归预测,本文对此方法继续描述。

设置所需解决的问题:

1. 小样本问题

假设数据集只有50张训练集和500张测试集;

2.网络结构最简,计算复杂度低,但同时需要保证Recall、Precision

如何解决:

1.数据增强

2.对比实验(修改卷积核大小、卷积层数量、全连接层数量)

实验步骤:

1. 生成车牌区域和标签

     图片size为64x64x3,车牌比例依据中国车牌比例。

2.定义网络模型结构和训练算法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值