马尔科夫链预测法
马尔科夫链预测法是一种基于马尔科夫链模型的预测方法,它可以用来分析和预测具有随机性的时间序列数据。马尔科夫链是一个数学模型,描述了在给定当前状态的情况下,未来状态的概率分布只依赖于当前状态,而与过去状态无关的过程。
马尔科夫链预测法的基本思想是根据历史数据构建一个马尔科夫链模型,并利用该模型来预测未来的状态。马尔科夫链模型可以通过计算状态之间的转移概率来表示。在预测的过程中,我们可以利用已知的历史状态序列来估计未来状态的概率分布,从而进行预测。
下面,我将介绍一个使用MATLAB实现马尔科夫链预测法的示例代码。假设我们有一个包含连续状态的时间序列数据,我们将使用马尔科夫链预测法对该时间序列进行预测。
首先,我们需要定义一个马尔科夫链模型。在这个例子中,我们将使用一个二阶马尔科夫链模型。也就是说,未来状态的概率分布将依赖于当前状态和前一个状态。
% 定义马尔科夫链模型
order = 2; % 阶数
numStates