预测——马尔可夫链

1、作用

马尔可夫是俄国著名的数学家。马尔可夫预测法是以马尔可夫的名字命名的一种特殊的预测方法。马尔可夫预测法主要用于市场预测和销售期望利润的预测。它是基于马尔可夫链,根据事件的目前状况预测其将来各个时刻(或时期)变动状况的一种预测方法。马尔可夫预测法是对地理、天气、市场、进行预测的基本方法,它是地理预测中常用的重要方法之一。

2、输入输出描述

输入:随时间序列变化的定类或定序变量
输出:马尔可夫链预测的预测结果​

3、案例示例

股价预测通过今天股票的涨跌,预测明天后天股票的涨跌;天气预报通过今天是否下雨,预测明天后天是否下雨。这些过程都是可以通过数学公式进行量化计算的。通过下雨、股票涨跌的概率,用公式就可以推导出来 N 天后的状况。

4、建模步骤

事物的发展状态总是随着时间的推移而不断变化的。在一般情况下,人们要了解事物未来的发展状态,不但要看到事物现在的状态,还要看到事物过去的状态。马尔可夫认为,还存在另外一种情况, 人们要了解事物未来的发展状态,只须知道事物现在的状态,而与事物以前的状态毫无关系。这种情况就称为马尔可夫过程。马尔可夫过程的重要特征是无后效性。事物第n次出现的状态,只与其第n-1次的状态有关,它与以前的状态无关。所谓无后效性,是指过去对未来无后效,而不是指现在对未来无后效。

状态空间

马尔可夫链节点的所有可能取值。状态空间可以视为一个以状态变数为座标轴的空间,因此系统的状态可以表示为此空间中的一个向量。

概率向量

概率向量的每个元素都是概率,并且元素之和为1。系统的可能状态数有k个。向量中各个元素分别表示表示第n次观测时第i个状态的概率。X^{\left ( 0 \right )}被称为初始状态。

转移概率矩阵

 p_{ij}表示这次观测前状态为i,现在观测是状态为j的概率。P矩阵元素非负。每一行的元素之和都为1

计算下一次观测的概率

根据无后效性,我们可以得出:

即为:

由于某一时刻状态转移的情况只依赖前一个状态,那么只要求出系统中任意两个状态之间的转移概率,这个马尔科夫链的模型就确定了。

判断是否具有唯一稳态分布(收敛)

马尔可夫链中全部状态节点需要满足以下条件:

不可约性:如果一个马尔可夫链的状态空间仅有一个连通类,即状态空间的全体成员,则该马尔可夫链是不可约的,否则马尔可夫链具有可约性。马尔可夫链的不可约性意味着在其演变过程中,随机变量可以在任意状态间转移。

常返性:若马尔可夫链在到达一个状态后,在演变中能反复回到该状态,则该状态是常返状态。

非周期性:在其演变中,马尔可夫链能够按任意>=1的周期常返回其状态。

遍历性:若马尔可夫链的一个状态是正常返的和非周期的,则该状态具有遍历性。遍历链是非周期的平稳马尔可夫链,有长时间尺度下的稳态行为,因此是被广泛研究和应用的马尔可夫链。

### 如何在 ArcGIS 中实现马尔可夫链预测方法 #### 使用 Tabulate Area 工具构建转移矩阵 为了在 ArcGIS 中应用马尔科夫链进行土地利用变化预测,通常会先创建一个转移概率矩阵来描述不同时间段内各类用地之间的转换情况。这一步骤可以通过 `Tabulate Area` 工具完成,该工具能够有效地对比两个时期的分类栅格数据集并生成相应的交叉表,从而得到每种类型的面积变化量及其比例关系[^1]。 ```python import arcpy from arcpy.sa import * # 设置工作空间 arcpy.env.workspace = "C:/data" # 定义输入参数 inZoneData = "landuse_2000" zoneField = "Value" inputRaster = Raster("landuse_2010") # 执行 Tabulate Area 函数 outTable = TabulateArea(inZoneData, zoneField, inputRaster, "Value", "transfer_matrix.dbf") ``` #### 计算状态转移概率矩阵 基于上述获得的土地覆盖类型间的转变频率信息,下一步就是估算各状态下一期到下一期的概率分布。此过程涉及简单的数学运算——即将每一行中的数值除以其总和以得出相对占比作为转移几率。这部分操作可以在 Python 脚本中借助 NumPy 或 Pandas 库轻松达成。 ```python import pandas as pd # 加载由 Tabulate Area 创建的结果表格 df = pd.read_csv('transfer_matrix.csv') # 归一化处理形成转移概率矩阵 prob_matrix = df.div(df.sum(axis=1), axis=0).fillna(0) print(prob_matrix) ``` #### 预测未来土地用途模式 一旦拥有了完整的转移概率矩阵,就可以运用它对未来某一时段内的潜在土地分配情况进行推测了。具体做法是从当前已知的状态出发,按照既定的过渡规则随机抽样决定下一个时刻各个区域所属类别;重复这一流程直至达到预期目标年份为止。对于更复杂的场景建模,则建议采用 Monte Carlo 方法多次迭代求解平均值或其他统计特征值。 需要注意的是,在实际项目里往往还需要考虑其他影响因子(如经济发展水平、政策导向等),此时单纯依靠 Markov Chain 可能无法满足精度需求,这时可以尝试结合 CA (Cellular Automata)-Markov 综合模型来进行更为精确的空间动态仿真分析[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值