马尔科夫链预测

1. 适用条件——无后效性

        马尔科夫链适用于那些具有“无后效性”的随机过程。

        “无后效性”,也称无记忆性,是指系统下一时刻的情况只与当前时刻有关,而与过去无关

        无后效性不仅是马尔科夫链的条件,也是动态规划问题的适用条件。在概率论里,离散型随机变量的概率分布中,只有几何分布具有无后效性;在连续性随机变量的分布中,只有指数分布具有这种无后效性,这两种分布分别描绘离散等待时间和连续等待时间。

        

2. 状态转移

        设p_{ij}(m)代表状态 i 经过 m 步转变为状态 j 的概率,P(m) = (p_{ij}(m))_{n*n} 称为 m 步概率转移矩阵。结合以下两个定理, 就可以根据初始状态以及单步概率转移矩阵 P 得到任意 m 下的P(m).

     

        举例如下:

        考虑顾客购买商品的情况,这里为了满足“无后效性”所以假设购买行为是无记忆的。

        给定了初始购买概率 (0.2, 0.4, 0.4) 和单步的概率转移矩阵 P,则可以得到第 n 天的购买概率。

 

3. 极限概率分布

        马尔科夫链最常用的就是求长期情况下的极限概率。

        下面的定理保证,只要单步转移矩阵 P 是正则矩阵,那么概率就存在极限。且最终的概率向量 π 满足 πP = π 以及\sum \pi _{i} = 1 。绝大多数情况下P本身的元素就都是正数,所以都存在极限概率。

        仍然以上面买味精为例,欲求一段时间后顾客购买情况的概率分布,直接联立方程组即可。

 

### 空间马尔科夫链预测模型介绍 空间马尔科夫链预测模型扩展了传统的时间序列中的马尔科夫链概念,引入地理或物理位置的空间维度。这类模型不仅考虑时间上的状态转移特性,还考虑到相邻区域之间的影响关系。 #### 特征描述 - **多维状态表示**:除了时间轴上定义的状态外,在空间维度也设定了多个可能的位置状态。 - **邻接效应纳入考量**:当评估某个特定地点在未来时刻进入新状态的概率时,会综合考察其周围临近地区的现状及其历史变化模式[^1]。 #### 应用场景实例 ##### 城市规划与发展分析 利用城市内各功能区(如住宅区、商业中心等)间的相互作用规律来进行长期发展趋势模拟。例如,可以预测随着公共交通设施改善带来的居住人口迁移方向以及由此引发的土地价值变动情况。 ```python import numpy as np from scipy import sparse def create_transition_matrix(locations_data): """ 构造基于地理位置数据构建转换概率矩阵 参数: locations_data (list of tuples): 含有每一对相邻地区ID及它们之间的联系强度的数据列表 [(loc_id_1, loc_id_2, weight), ...] 返回值: transition_probabilities (sparse matrix): 转移概率稀疏矩阵形式 """ unique_ids = set([item for sublist in [[id1,id2] for id1,id2,_ in locations_data] for item in sublist]) n_locations = len(unique_ids) row_indices = [] col_indices = [] values = [] for start_loc,end_loc,value in locations_data: row_indices.append(start_loc) col_indices.append(end_loc) values.append(value) # 归一化处理使得每一行之和等于1 data_array = np.array(values,dtype=float).reshape(-1,) csr_format = sparse.csr_matrix((data_array,(row_indices,col_indices)),shape=(n_locations,n_locations)) normalized_csr = normalize(csr_format,axis=1,norm='l1') return normalized_csr ``` ##### 生态环境监测 对于森林火灾风险预警而言,通过建立覆盖整个林区网格单元的时空马尔科夫链模型,能够有效捕捉火势蔓延路径特征并提前采取防控措施;同样适用于水质污染扩散范围预估等方面的研究工作。 ##### 社交网络动态演化 研究社交平台上信息传播机制时,节点代表个体用户,边则反映了好友连接状况或是共同兴趣话题关联度等因素。借助此类模型可以帮助理解热点事件如何在网络社区内部快速发酵,并指导精准营销策略制定。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值