Improved Techniques for Training GANs中文部分翻译版

12 篇文章 0 订阅
12 篇文章 0 订阅

Improved Techniques for Training GANs中文翻译版

3 关于GAN训练的收敛性

训练GANs就是要在两个不合作的游戏玩家之间找到一个NASH平衡。每一个玩家都希望自己的损失最小化,J (D)(θ(D); θ(G)) for the discriminator and
J (G)(θ(D); θ(G)) for the generator. 一个纳西平衡就是一个关于(θ(D); θ(G)) 的点。例如J (D) is at a minimum with respect to θ(D) and J (G) is at a minimum with respect to θ(G). 不幸的是,寻找到一个纳西平衡很困难。算法存在于个例中,但是我们有不清楚他们何时运用GAN有效,从而使得函数损失non-convex ,参数是连续的,而且参数空间极高。

纳西平衡发生在最小化损失的时候的这个主意直接激发了我们使用传统的基于梯度最小化技术来不断最小化两个玩家的损失这样一个想法。不行的是,a modification to θ(D) that reduces J (D) can increase J (G), and a modification to θ(G) that reduces J (G) can increase J (D). 梯度下降并不能聚焦到所有的游戏中。例如,当一个玩家针对x来最小化xy,而另一个玩家针对y来最小化-xy,梯度下降进入当一个稳定的轨道,而不是收敛到x和y都等于0的这样一个比较好的均衡点上.先前的GAN训练方法均同时运用梯度下降于每一个玩家的损失上,尽管是缺乏收敛这一保证。下面我们介绍了以下启发式动机以鼓励融合的技巧:

3.1 特征匹配

特征匹配可以解决GANs的不稳定性,它通过为生成器定义一个新的目标来阻止生成器在当前的判别器下过度训练。而不是直接最大化判别器的输出,一个新的目标要求生成器生成的数据匹配真实数据的统计,这样我们使用判别器只用去定义我们认为值得去匹配的统计。特别的是,我们训练一个生成器去匹配期望的判别器中间层的一个特征值。对于生成器去匹配这个行为是一个统计的自然选择,因此通过训练判别器,我们将要求判别器找到那些真实数据与当下模型所生成的数据之间具有区分性的特征。

让f(x)表示判别器的中间层上的激活函数,对于生成器我们新的目标被定义为jjEx∼pdataf(x) - Ez∼pz(z)f(G(z))jj2 2.

 

 

判别器,也就是f(x),就是使用惯用的方式训练。随着标准的GAN训练,目标被放置在一个刚好G可以很好的匹配训练数据的分布。实际上我们不能保证达到这个点,但是经验的结果显示:特征匹配的确在解决GAN不稳定这一问题时有效。

3.2 minibatch discrimination

对于GAN来说最大的失败模式就是生成器崩溃于一个参数设置,参数设置的位置通常会有多个相同的点。当生成器崩溃到单一模式,这个时候就迫在眉睫,判别器的梯度可能指向一个相似方向上的一些相似的点上。因为是独立地处理每一个样本的,在梯度之间是不存在协作的,因此并没有一个机制可以告诉生成器的输出彼此之间不相似。相反,所有的输出都朝向一个单一的点,判别器当下就认为这是一个即为理想化的状态。在崩裂发生之后,判别器学到了单一的点都来自于生成器,但是梯度下降不可能区分这些相同的输出。判别器的梯度将这些由生成器生成的单一点推向一个无线的空间,这个时候算法也就不能收敛到一个正确的分布上去。一个明显的去避免这种类型发生的策略就是允许判别器看到多种数据混合样本,我们称这就为minibatch discrimination。

这个概念很简单:任何判别器模型可以看到混合的多样本,而不是相对孤立的样本,这样的判别器潜在帮助避免生成器的崩溃。实际上,batch normation的成功应用在判别器上就是针对这一方面最好的解释。目前为止,我们将实验限制在明确旨在识别特别靠近的发生器样本的模型上。用于模拟小批量中的示例之间的紧密度的一个成功的规范如下:让f(xi)代表特征向量,xi为输入,是由判别器的中间层所产生。然后,我们用一个张量T与这个f(xi)相乘,其结果为矩阵Mi,然后我们计算Mi矩阵的行(一行为一个样本)之间的L1距离,然后运用一个负指数(如图1)

。这个由minibatch层一个样本的输出O(xi)被定义为到其他样本的总和。

接下来,我们主要集中精力于中间特征f(xi)作为输入的minibatch 层的输出O(xi)然后将这些结果喂入判别层的下一层。我们分别计算这些来自生成器和训练数据样本的minibatch特征。正如以前,判别器仍然需要输出一个单一数字对应每一个样本,这个数字表示来自训练数据的可能性或者概率:判别器的任务非常有效地区分每一个样本为真实数据或者生成数据,但是现在他可以使用minibatch中的其他样本作为辅助信息。Minibatch判别促使生成器生成更加诱人的样本,在这方面,他优于特征匹配。然而有趣的是,如果目标是使用半监督学习得到一个强壮的分类器的话,特征匹配被认为更有效。

3.3 历史平均

当使用这个技术的时候,我们修改每一个玩家的代价,包含一项是过去时间i的参数值。参数的历史平均可以更新在一个在线实时,因此this learning rule scales well to long time series. 这种方法受到虚拟游戏[16]算法的启发,该算法可以在其他类型的游戏中找到均衡。我们发现我们的方法可以找到低维度 连续non-convex的游戏,比如由一个玩家控制x另一个玩家控制y的minimax游戏,这个函数为(f(x)-1)(y-1),并且f(x)=x当x<0,否则f(x)=x2.对于这个玩具游戏,通过进入不接近平衡点的扩展轨道,梯度下降失败。

3.4单面标签平滑

标签平滑,是由Szegensy等人与十九世纪八十年到独立发现的,它使用平滑值来取代了0和1,比如.9或者.1,目前被用来减少神经网络对敌对范例的脆弱性。

将正样本分类目标用α表示,将负样本目标表示为β,最佳的判别器变成D(x).分子中pmodel的存在是问题的(什么情况,不知道咋翻了),因为,Pdata是一个近似于0的值,而pmodel是一个很大,来自pmodel的错误样本将不会主动靠近这个值。因此仅需smooth正标签向α,让负样本置于0。

3.5 可视化batch normalization

批量标准化极大地改善了神经网络的优化,并且显示出对DCGAN非常有效[3]。 然而,它使得输入示例x的神经网络的输出高度依赖于同一小批量中的若干其他输入x0。 为了避免这个问题,我们引入了虚拟批量标准化(VBN),其中每个示例x基于在参考批次的示例上收集的统计数据进行标准化,这些示例选择一次并在训练开始时固定,并且基于x本身。 仅使用自己的统计信息对参考批次进行标准化。 VBN计算量很大,因为它需要在两个小数据集上进行前向传播,所以我们只在发生器网络中使用它。

4图像质量的评价

 

5 半监督学习

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值