Improved Techniques for Training GANs(Goodfellow)

Improved Techniques for Training GANs(Goodfellow)–2016

(改进的GAN训练技术)

摘要:
我们介绍了适用于生成对抗网络(GAN)框架的各种新的体系结构功能和培训程序。 我们专注于GAN的两个应用:半监督学习和人类视觉上逼真的图像生成。 与大多数有关生成模型的工作不同,我们的主要目标不是训练对测试数据分配高可能性的模型,也不是要求模型能够在不使用任何标签的情况下很好地学习。 使用我们的新技术,我们在MNIST,CIFAR-10和SVHN的半监督分类中获得了最新的结果。 视觉图灵测试证实了生成的图像的高质量:我们的模型生成了人类无法与真实数据区分开的MNIST样本,而CIFAR-10样本产生了21.3%的人为错误率。 我们还以前所未有的分辨率展示了ImageNet示例,并表明我们的方法使模型能够学习ImageNet类的可识别特征。

介绍:
生成对抗网络[1](GAN)是一类基于博弈论的生成模型学习方法。 GAN的目标是训练生成器网络G(z;θ(G)),该生成器网络通过将噪声z的向量转换为x = G(z;θ(G)),从数据分布pdata(x)生成样本。 G的训练信号由一个鉴别器网络D(x)提供,该鉴别器网络D(x)被训练为从真实数据中区分出生成器分布pmodel(x)中的样本。 继而训练生成器网络G,以欺骗鉴别器接受其输出为真实的。

GAN的最新应用表明,它们可以产生出色的样品[2,3]。 但是,训练GAN需要找到具有连续高维参数的非凸博弈的Nash平衡。 GAN通常使用梯度下降技术进行训练,该技术旨在发现代价函数的低值,而不是寻找游戏的纳什均衡。 当用于寻求纳什均衡时,这些算法可能无法收敛[4]。

在这项工作中,我们介绍了几种旨在鼓励GAN游戏融合的技术。 这些技术是由对非收敛问题的启发式理解所激发的。 它们可以改善半监督学习性能并改善样本生成。 我们希望其中一些可以构成未来工作的基础,为融合提供正式保证。 所有代码和超参数都可以在以下网址找到:https://github.com/openai/improved_gan

3 Toward Convergent GAN Training(GAN训练的融合)

3.1 Feature matching(特征匹配)
3.2 Minibatch discrimination(小批量判别)
3.3 Historical averaging(历史平均)
3.4 One-sided label smoothing(单面标签平滑)
3.5 Virtual batch normalization(虚拟批次标准化)

4 Assessment of image quality(图像质量评估)

5 Semi-supervised learning(半监督学习)

5.1 Importance of labels for image quality(标签对图像质量的重要性)

6 Experiments(实验)

见原文:Improved Techniques for Training GANs

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值