TensorFlow
文章平均质量分 54
全部梭哈一夜暴富
深度学习,人工智能,Python,TensorFlow。
QQ:923583495
展开
-
Tensorflow搭建一个神经网络
一、Tensorlow结构import tensorflow as tfimport numpy as np#创建数据x_data = np.random.rand(100).astype(np.float32)y_data = x_data*0.1+0.3#创建一个 tensorlow 结构weights = tf.Variable(tf.random_uniform([1], -1.0, 1.0))#一维,范围[-1,1]biases = tf.Variable(tf.zeros原创 2021-05-13 22:35:36 · 2285 阅读 · 17 评论 -
【文献导读】 Faster R-CNN人脸检测
一、文章背景文章题目《Face Detection with the Faster R-CNN》文章下载地址:https://arxiv.org/abs/1606.03473二、文章导读(一)文章摘要部分:The Faster R-CNN has recently demonstrated impressive results on various object detecti...原创 2019-10-24 19:22:53 · 1142 阅读 · 0 评论 -
自编码网络(一)—— 提取图片特征,并利用特征还原图片
通过建立一个两层降维的自编码网络,将MNIST数据集的数据特征提取出来,并通过这些特征再重建一个MNIST数据集。1,引入头文件,并加载mnist数据import tensorflow as tfimport numpy as npimport matplotlib.pyplot as plt#导入mnist数据集from tensorflow.examples.tutoria...原创 2018-11-26 17:55:10 · 7139 阅读 · 0 评论 -
自编码网络(二)—— 提取图片的二维特征,并利用二维特征还原图片
在自编码网络中使用线性解码器对MNIST数据特征进行再压缩,并将其映射到直角坐标系上。这里使用4层逐渐压缩将784维度分别压缩成256、64、16、2这四个特征向量。1.引入图文件,定义学习参数变量import tensorflow as tfimport numpy as npimport matplotlib.pyplot as pltfrom tensorflow.exa...原创 2018-12-04 17:12:21 · 2318 阅读 · 4 评论 -
自编码网络(三)—— 使用去噪自编码提取MNIST特征
1.引入头文件,创建网络模型及定义学习参数的变量import numpy as npimport tensorflow as tfimport matplotlib.pyplot as pltfrom tensorflow.examples.tutorials.mnist import input_datamnist = input_data.read_data_sets("...原创 2018-12-06 18:04:49 · 1624 阅读 · 0 评论 -
自编码网络(四)——实现去燥自编码
1.引入头文件,创建网络模型及定义学习参数变量对mnist集中的原始输入图片加入噪声,在自编码网络中进行训练,得到抗干扰能力更强的特征提取模型。引入头文件,创建mnist数据集。import numpy as npimport tensorflow as tfimport matplotlib.pyplot as pltfrom tensorflow.examples.t...原创 2018-12-20 17:14:15 · 516 阅读 · 0 评论 -
自编码网络(五)——变分自编码
变分自编码其实就是在编码过程中改变样本的分布,“学习样本的规律”,具体指的就是样本的分布,假设知道样本的分布函数,就可以从这些函数中随便取一个样本,然后进行网络解码层前向传导,这样就可以生成一个新的样本。为了得到这这个样本的分布函数,模型训练的目的将不再是这样的样本本身,而是通过加一个约束项,将网络生成一个服从高斯分布的数据集,这样按照高斯分布里的均值和方差规则就可以取任意相关的数据,然后通过...原创 2018-12-29 11:22:15 · 919 阅读 · 3 评论 -
python中模型训练不收敛问题
近期在做人脸表情识别时,遇到了一个问题,就是模型写好进行训练时,出现了不收敛的现象。情况如下:出现这种问题,很难无从下手,一步一步的排查各个环节,首先检查模型,发现模型并木有问题。部分模型代码:def train_model(): # 构建模型---------------------------------------------------------- x = ...原创 2019-01-24 15:16:51 · 4312 阅读 · 2 评论 -
手势数字识别
直接代码import mathimport numpy as npimport cv2import h5pyimport matplotlib.pyplot as pltimport tensorflow as tffrom tensorflow.python.framework import opsfrom tf_utils import load_dataset, rand...原创 2019-02-27 18:06:07 · 1719 阅读 · 3 评论 -
卷积神经网络对CIFAR数据集分类
本例通过一个具有全局平局池化层的神经网络对CIFAR数据集分类1.导入头文件引入数据集这部分使用cifar10_input里面的代码,在cifar10文件夹下建立卷积文件,部分代码如下:import cifar10_inputimport tensorflow as tfimport numpy as npbatch_size = 128data_dir = 'cifar-...原创 2018-11-19 10:28:53 · 1129 阅读 · 3 评论 -
利用全连接网络将图片进行分类
实例描述:构建一个简单的多层神经网络,以拟合MNIST样本完成分类任务。1.定义网络参数在输入和输出之间使用两个隐藏层,每个层各256个节点,学习率使用0.001。import tensorflow as tfimport numpy as npfrom tensorflow.examples.tutorials.mnist import input_datamnist...原创 2018-11-09 16:00:51 · 2062 阅读 · 0 评论 -
Fatal error in launcher: Unable to create process using '"d:\python\python.exe
今天进行进行tensorboard可视化时出现的问题,由于本机同时安装了python2.7和python3.6,在安装的时候为了区分,分别把 python2.7和 python3.6里面的python.exe和pythonw.exe修改为相应的python2.exe,pythonw.2exe和python3.exe,pythonw3.exe。今天遇到的问题是:Fatal error in...原创 2018-10-23 20:43:19 · 14170 阅读 · 1 评论 -
TensorBoard可视化遇到的问题D:\Python\log>tensorboard --logdir D:\Python\log/mnist_with_summaries
做线性回归TensorBoard可视化的时候遇到的一些问题将可视化脚本写好后,在cmd里面输入如下代码D:\Python\log>tensorboard --logdir D:\Python\log/mnist_with_summaries运行该程序之后出现如下错误,根据提示打开如图所示红色框中的htpplib.py文件进行调整,这个文件可能是用python2写的,有些语法与p...原创 2018-10-23 21:28:21 · 1854 阅读 · 0 评论 -
with session的使用
使用with session的方法建立session,并在session中计算两个变量的相加与相乘值import tensorflow as tfa = tf.constant(3)#定义常量3b = tf.constant(4)#定义常量4with tf.Session() as sess:#建立session print("相加:%i" % sess.run(a+b)) ...原创 2018-10-25 09:24:08 · 1233 阅读 · 0 评论 -
tensorflow.python.framework.errors_impl.UnknownError: Could not start gRPC server
在做TensorFlow实现分布式训练时,遇到了这个问题tensorflow.python.framework.errors_impl.UnknownError: Could not start gRPC server在运行代码时,之前都是好的,不知道为什么,这次突然出现这个问题,返回的整体错误类型如下图:查看代码没有错误,后来才发现,原来是上次运行没有中断,又运行了一次,导致发生未...原创 2018-10-26 15:52:32 · 3431 阅读 · 4 评论 -
TensorFlow以逻辑回归拟合二维数据
深度学习大概有如下4个步骤:(1)准备数据(2)搭建模型(3)迭代训练(4)使用模型准备数据阶段一般就是把与任务相关的数据收集起来,然后通过建立网络模型,经过一定的迭代训练让网络学习收集来的数据特征,形成一个可以用的模型,之后就是通过使用模型来解决现实中的问题。假设有一组数据集,其中x和y的对应关系为y≈2x。本例子就是让神经网络通过学习这些样本,并找到其中的规律,让神...原创 2018-10-29 21:10:52 · 529 阅读 · 0 评论 -
退化学习率的应用
定义一个学习率变量,将其衰减系数设置好,并设置好迭代循环的次数,将每次迭代运算的次数与学习率打印出来,观察学习率按照次数退化的现象。本例中使用迭代循环计数变量global_step来记录循环次数,初始学习率为0.1,令其以每10次衰减0..9得速度来进行退化。import tensorflow as tfglobal_step = tf.Variable(0, trainable= F...原创 2018-10-31 16:01:50 · 443 阅读 · 0 评论 -
softmax交叉熵
softmax应用实例描述下面的代码中,假设有一个标签labels和一个网络输出值logits。这个例子以这两个值来计算一下3次试验。(1) 两次softmax试验:将输出的logits分别进行1次和2次softmax,观察两次的区别及意义。(2) 观察交叉熵:将步骤(1)中的两个值分别进行softmax_cross_entropy_with_logits,观察它们的区别。...原创 2018-10-30 18:06:29 · 770 阅读 · 0 评论 -
线性逻辑回归python
实例描述假设肿瘤医院想要用神经网络对已有的病例数据进行分类,数据的样本特征包括病人的年龄和肿瘤的大小,对应的标签应该是良性肿瘤还是恶性肿瘤1.生成样本集利用python生成一个二维数组“病人的年纪,肿瘤的大小”样本集,下面代码中generate为生成样本的函数,意思是按照指定的均值和方差生成固定数量的样本。import numpy as npimport matplotlib....原创 2018-11-06 15:21:40 · 339 阅读 · 0 评论 -
TensorFlow的数据读取机制
下面用一个具体的例子体会TensorFlow中的数据读取,如下图所示,假设当前文件夹中已经有1.png,2.png,3.png三张图片,希望读取的这三张图片的5个epoch,并把读取的结果重新存到read文件夹中。代码如下(对应的文件为test1.py)import tensorflow as tf#新建一个Sessionwith tf.Session() as sess: #要读取...原创 2018-05-30 14:53:12 · 615 阅读 · 4 评论