python 遥感图像分类

本文介绍了使用阈值切片法对landsat8遥感影像进行分类,探讨了不同类别数量(20类、32类、10类)对分类效果的影响,强调了理解研究区域和地物类别对避免过拟合和欠拟合的重要性。
摘要由CSDN通过智能技术生成

图像分类的常用方法一般包括监督分类和非监督分类两大类,本文采用阈值切片法对遥感影像进行分类,使用数据为landsat8遥感影像,下载地址:

http://github.com/GeospatialPython/Learn/blob/master/thermal.zip?raw=true

该影像为单波段遥感影像

利用切片法对上述影像进行分类,代码如下:

from osgeo import gdal_array

#输入文件
src = "./thermal/thermal.tif"

# 输出文件名
tgt = "classified.jpg"

#使用gdal库加载图片到numpy
srcArr = gdal_array.LoadFile(src)

#根据类别数目将直方图分割成20个颜色区间
classes = gdal_array.numpy.histogram(srcArr, bins = 20)[1]

#颜色查找表的记录数4必须是len(classes)+1,声明RGN元组
lut =  [[255, 0, 0], [191, 48, 48], [166, 0, 0], [255, 64, 64], [255, 155, 155],
       [255, 116, 0], [191, 113, 48], [255, 178, 115], [0, 
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值