python
文章平均质量分 80
全部梭哈一夜暴富
深度学习,人工智能,Python,TensorFlow。
QQ:923583495
展开
-
Python批量文件重命名(rename)
大量图片或者文本名需要重命名的时候,一个一个修改太麻烦,这个时候就需要快速简洁的方法来搞定。最近在处理数据的时候,需要对图片和文本进行重命名,做了一下实验。比如像这两个不同的数据,需要将原本图像名程进行修改,现在要将上千张类似的图片名称进行修改,将所有图片放入image文件夹,从0开始编号,代码如下:import osclass BatchRename(): def rename(self): path = "E:/python/data/add_data..原创 2022-04-13 11:20:22 · 10822 阅读 · 5 评论 -
python 图像处理基本操作
PIL库对图像的基本操作PIL网上有很多介绍,这里不再讲解。直接操作,读取一张图片,将其转换为灰度图像,并打印出来。原创 2021-06-04 21:20:55 · 2610 阅读 · 14 评论 -
python 遥感图像分类
本文采用阈值切片法对遥感影像进行分类,使用数据为landsat8遥感影像,下载地址:http://github.com/GeospatialPython/Learn/blob/master/thermal.zip?raw=true用envida'k原创 2021-06-04 16:10:47 · 4787 阅读 · 8 评论 -
python图像处理(十一)——图像锐化与边缘检测之Roberts算子、Prewitt算子、Sobel算子、Laplacian算子
在图像增强过程中,通常利用各类图像平滑算法消除噪声,图像的常见噪声主要有加性噪声、乘性噪声和量化噪声等。一般来说,图像的能量主要集中在其低频部分,噪声所在的频段主要在高频段,同时图像边缘信息也主要集中在其高频部分。这将导致原始图像在平滑处理之后,图像边缘和图像轮廓模糊的情况出现。为了减少这类不利效果的影响,就需要利用图像锐化技术,使图像的边缘变得清晰。一、Roberts算子Roberts算子又称交叉微分算法,它是基于交叉差分的梯度算法,通过局部差分计算检测边缘线条,常来处理具有陡峭的低噪声图像,当图原创 2021-03-16 22:07:32 · 13457 阅读 · 3 评论 -
python图像处理(十)——图像仿射变换、图像透视变换和图像校正
一、图像仿射变换1.原理仿射变换(Affine Transformation 或Affine Map)是一种二维坐标(x, y)到二维坐标(u, v)的线性变换,转换过程坐标点的相对位置和属性不发生变换,是一个线性变换,该过程只发生旋转和平移过程。因此,一个平行四边形经过仿射变换后还是一个平行四边形。所以,仿射= 旋转 + 平移。其数学表达式形式如下:对应的齐次坐标矩阵表示形式为:仿射变换保持了二维图形的“平直性”(直线经仿射变换后依然为直线)和“平行性”(直线之间的相对位置关.原创 2021-03-15 20:17:19 · 11745 阅读 · 2 评论 -
Python图像处理(九)——形态学运算之图像开运算、比运算、梯度运算
一、图像开运算1.基本原理图像开运算是图像依次经过腐蚀、膨胀处理后的过程。图像被腐蚀后,去除了噪声,但是也压缩了图像;接着对腐蚀过的图像进行膨胀处理,可以去除噪声,并保留原有图像。如下图所示:开运算:先腐蚀,后膨胀下面是借鉴一位博主写的开运算效果图:作用:用来消除小的物体,平滑形状边界,并且不改变其面积。可以去除小颗粒噪声,断开物体之间的粘连。2.函数原形图像开运算使用函数morphologyEx(),它是形态学扩展的一组函数,其参数cv2.MORPH_OPE...原创 2021-03-15 17:18:38 · 2011 阅读 · 0 评论 -
python图像处理(八)——形态学运算之图像腐蚀与图像膨胀
图像的膨胀(dilation)和腐蚀(erosion)是两种基本的形态学运算,主要用来寻找图像中的极大区域和极小区域,其中膨胀类似与 '领域扩张' ,将图像的高亮区域或白色部分进行扩张,其运行结果图比原图的高亮区域更大。腐蚀类似 '领域被蚕食' ,将图像中的高亮区域或白色部分进行缩减细化,其运行结果图比原图的高亮区域更小。一、图像膨胀...原创 2021-03-14 11:46:08 · 17265 阅读 · 1 评论 -
Python图像处理(七)——图像阈值化处理
一、阈值化图像的二值化,就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的只有黑和白的视觉效果。一幅图像包括目标物体、背景还有噪声,要想从多值的数字图像中直接提取出目标物体,常用的方法就是设定一个阈值T,用T将图像的数据分成两部分:大于T的像素群和小于T的像素群。这是研究灰度变换的最特殊的方法,称为图像的二值化(Binarization)。当灰度Gray小于阈值T时,其像素设置为0,表示黑色;当灰度Gray大于或等于阈值T时,其Y值为255,表示白色。Py..原创 2021-03-10 22:04:09 · 10954 阅读 · 10 评论 -
Python图像处理(六)——图像缩放、图像旋转、图像翻转、图像平移
一、图像缩放图像缩放主要使用resize函数result = cv2.resize(src, dsize[, result[. fx[, fy[, interpolation]]]])其中src表示原始图像,dsize表示缩放大小,fx和fy也可以表示缩放大小倍数,他们两个(dsize或fx\fy)设置一个即可实现图像缩放代码如下:import cv2#读取图片image = cv2.imread("E:/pythonProject/xin.jpeg")#图片缩放imag原创 2021-03-10 17:58:27 · 12337 阅读 · 1 评论 -
Python图像处理(五)——图像类型转换、加法运算及图像融合
一、图像类型转换图像类型转换是指将一种图像转化成另一种类型,比如将彩色图像转换成灰度图像,BGR格式图像转换成RGB格式图像,一下列出OpenCV中常用的三种图像类型转化。cv2.COLOR_BGR2GRAY cv2.COLOR_BGR2RGB cv2.COLOR_GRAY2BGR代码如下所示:import cv2#读取图片image = cv2.imread("E:/pythonProject/mei.jpeg")#彩色图像转换为灰度图像meig = cv2.cvtC原创 2021-03-08 21:53:41 · 2213 阅读 · 4 评论 -
Python图像处理(四)——图像平滑操作之均值滤波、方框滤波、高斯滤波、中值滤波
一、图像平滑图像平滑是一种区域增强的算法,平滑算法有邻域平均法、中指滤波、边界保持类滤波等。在图像产生、传输和复制过程中,常常会因为多方面原因而被噪声干扰或出现数据丢失,降低了图像的质量(某一像素,如果它与周围像素点相比有明显的不同,则该点被噪声所感染)。这就需要对图像进行一定的增强处理以减小这些缺陷带来的影响。为了方便做出比较,先给一幅图片中加入噪声,代码如下:import cv2import numpy as np# 读取图片image = cv2.imread('E:/pyth原创 2021-03-07 11:35:39 · 6049 阅读 · 1 评论 -
python图像处理(三)——获取图像属性、感兴趣区域ROI及通道处理
一、获取图像属性1.形状-shape通过shape关键字获取图像形状,返回值为图像行数,列数以及通道数的元组。import cv2image = cv2.imread("灰度图像”)print(image.shap)#(512,512)import cv2image = cv2.imread("彩色图像”)print(image.shap)#(512,512,3)import cv2#获取图片image = cv2.imread('E:..原创 2021-03-04 16:19:29 · 9782 阅读 · 2 评论 -
python图像处理(一)——图像处理OpenCV入门函数
一、OpenCV读取图像本文在python3.7和OpenCV进行实验,首先安装OpenCV,网上有很多教程,这里不再赘述。1.图像读入OpenCV读取图像函数img = cv2.imread(“文地址”,[,参数])参数(1) cv2.IMREAD_UNCHANGED (图像不可变)参数(2) cv2.IMREAD_GRAYSCALE (灰度图像)参数(3) cv2.IMREAD_COLOR (读入彩色图像)参数(4) cv2.COLOR_BGR2RGB (图像通道BGR转成R原创 2021-03-02 16:59:26 · 866 阅读 · 0 评论 -
python图像处理(二)——OpenCV和Numpy库读取修改像素的区别
一、OpenCV读取像素方法1.灰度图像,返回灰度值返回值=图像(位置参数),例p=image[88,142]import cv2#读入图片image = cv2.imread("E:/pythonProject/33.png", cv2.IMREAD_UNCHANGED)#灰度图像p = image[88,142]print(p)#显示图片cv2.imshow("demo",image)#等待显示cv2.waitKey(0)cv2.destroyAllWindow原创 2021-03-03 11:18:26 · 1357 阅读 · 0 评论 -
简单的基本测试题python
最近整理了一些比较基本的小算法,供大家参考1.把一元的钞票换成一份二分和五分(每种至少一枚)有多少种换法?iter = 0for i in range(1,20): for j in range(1,48): one=100-5*i-2*j if one >= 1: iter+=1 # print("五分:{}个".format(i)) # print("二分:{}个".form原创 2020-05-11 11:32:39 · 689 阅读 · 0 评论