深度学习
文章平均质量分 60
全部梭哈一夜暴富
深度学习,人工智能,Python,TensorFlow。
QQ:923583495
展开
-
【文献导读】 Faster R-CNN人脸检测
一、文章背景文章题目《Face Detection with the Faster R-CNN》文章下载地址:https://arxiv.org/abs/1606.03473二、文章导读(一)文章摘要部分:The Faster R-CNN has recently demonstrated impressive results on various object detecti...原创 2019-10-24 19:22:53 · 1142 阅读 · 0 评论 -
自编码网络(一)—— 提取图片特征,并利用特征还原图片
通过建立一个两层降维的自编码网络,将MNIST数据集的数据特征提取出来,并通过这些特征再重建一个MNIST数据集。1,引入头文件,并加载mnist数据import tensorflow as tfimport numpy as npimport matplotlib.pyplot as plt#导入mnist数据集from tensorflow.examples.tutoria...原创 2018-11-26 17:55:10 · 7139 阅读 · 0 评论 -
自编码网络(二)—— 提取图片的二维特征,并利用二维特征还原图片
在自编码网络中使用线性解码器对MNIST数据特征进行再压缩,并将其映射到直角坐标系上。这里使用4层逐渐压缩将784维度分别压缩成256、64、16、2这四个特征向量。1.引入图文件,定义学习参数变量import tensorflow as tfimport numpy as npimport matplotlib.pyplot as pltfrom tensorflow.exa...原创 2018-12-04 17:12:21 · 2318 阅读 · 4 评论 -
自编码网络(三)—— 使用去噪自编码提取MNIST特征
1.引入头文件,创建网络模型及定义学习参数的变量import numpy as npimport tensorflow as tfimport matplotlib.pyplot as pltfrom tensorflow.examples.tutorials.mnist import input_datamnist = input_data.read_data_sets("...原创 2018-12-06 18:04:49 · 1624 阅读 · 0 评论 -
自编码网络(四)——实现去燥自编码
1.引入头文件,创建网络模型及定义学习参数变量对mnist集中的原始输入图片加入噪声,在自编码网络中进行训练,得到抗干扰能力更强的特征提取模型。引入头文件,创建mnist数据集。import numpy as npimport tensorflow as tfimport matplotlib.pyplot as pltfrom tensorflow.examples.t...原创 2018-12-20 17:14:15 · 516 阅读 · 0 评论 -
自编码网络(五)——变分自编码
变分自编码其实就是在编码过程中改变样本的分布,“学习样本的规律”,具体指的就是样本的分布,假设知道样本的分布函数,就可以从这些函数中随便取一个样本,然后进行网络解码层前向传导,这样就可以生成一个新的样本。为了得到这这个样本的分布函数,模型训练的目的将不再是这样的样本本身,而是通过加一个约束项,将网络生成一个服从高斯分布的数据集,这样按照高斯分布里的均值和方差规则就可以取任意相关的数据,然后通过...原创 2018-12-29 11:22:15 · 919 阅读 · 3 评论 -
手势数字识别
直接代码import mathimport numpy as npimport cv2import h5pyimport matplotlib.pyplot as pltimport tensorflow as tffrom tensorflow.python.framework import opsfrom tf_utils import load_dataset, rand...原创 2019-02-27 18:06:07 · 1719 阅读 · 3 评论 -
对抗神经网络(一)——GAN
对抗神经网络其实是两个网络的组合,可以理解为一个网络生成模拟数据,另一个网络判断生成的数据是真实的还是模拟的。生成模拟数据的网络要不断优化自己让判别的网络判断不出来,判别的网络也要不断优化自己让判断的更加精确。两者的关系形成对抗,因此叫对抗神经网络。GAN由generator(生成模型)和discriminator(判别式模型)两部分构成。generator:主要是从训练数据中...原创 2019-02-25 15:39:46 · 5351 阅读 · 2 评论 -
对抗神经网络(二)——DCGAN
一、DCGAN介绍DCGAN即使用卷积网络的对抗网络,其原理和GAN一样,只是把CNN卷积技术用于GAN模式的网络里,G(生成器)网在生成数据时,使用反卷积的重构技术来重构原始图片。D(判别器)网用卷积技术来识别图片特征,进而做出判别。同时,CDGAN中的卷积神经网络也做了一些结构的改变,以提高样本的质量和收敛速度。DCGAN的generator网络结构图如下:G网中使用ReLU作...原创 2019-03-13 16:33:37 · 16372 阅读 · 13 评论 -
用RNN实现一个退位减法器
使用python编写一个简单的循环神经网络拟合一个退位减法的操作1.定义基本函数首先手动写一个sigmoid函数机器导数import copy, numpy as npnp.random.seed(0) #固定随机生成器的种子,可以每次得到一样的值def sigmoid(x): #激活函数 output = 1/(1+np.exp(-x)) return outp...原创 2018-11-22 17:05:58 · 709 阅读 · 2 评论 -
卷积神经网络对CIFAR数据集分类
本例通过一个具有全局平局池化层的神经网络对CIFAR数据集分类1.导入头文件引入数据集这部分使用cifar10_input里面的代码,在cifar10文件夹下建立卷积文件,部分代码如下:import cifar10_inputimport tensorflow as tfimport numpy as npbatch_size = 128data_dir = 'cifar-...原创 2018-11-19 10:28:53 · 1129 阅读 · 3 评论 -
利用TensorFlow识别mnist
本次试验一共两层网络,比较简单,在实验中发现,将学习率设为1e-4时,测试精度为23.7%,将学习率设为1e-3时,测试精度为83.28%,将学习率设置为1e-2时,测试精度为95.81%,随着学习率的增大虽然测试精度提高了,但是在训练过程中发现当学习率为0.01时出现了了梯度爆炸现象。 一般2层的话学习率在设置0.001-0.005之间 , 如果10层可以设置到0.01 代码:import te...原创 2018-05-30 10:16:58 · 366 阅读 · 1 评论 -
如何使用TensorFlow在自己的图像数据上训练深度学习模型
1微调原理在自己的数据集上训练一个新的深度学习模型时,一般采取在预训练ImageNet上进行微调的方法。什么是微调?这里以VGG16为例进行讲解。图1.1VGG16结构示意图如图1.1所示,VGG16的结构为卷积层+全连接层。卷积层分为五个部分,共13层,即图中的conv1~conv5。还有全连接层fc6、fc7、fc8。卷积层加上全连接层总共16层,因此被称为VGG16。如果要将VGG16的结构...原创 2018-06-25 17:42:26 · 13447 阅读 · 24 评论 -
Deep Dream模型
Deep Dream是Google公司在2015年公布的一项有趣的技术,在训练好的神经个网络中,只需要设定几个参数就可以通过这项技术生成一张图像,生出的图像不仅令人印象深刻,还能帮助我们更好的理解神经网络的运行机制。1生成原始的Deep Dream图像原始的DeepDream模型只需要优化ImageNet模型卷积层某个通道的激活值就可以了,因此应在TensorFlow中导入一个ImageNet图像...原创 2018-06-28 18:08:28 · 1187 阅读 · 0 评论 -
TensorFlow以逻辑回归拟合二维数据
深度学习大概有如下4个步骤:(1)准备数据(2)搭建模型(3)迭代训练(4)使用模型准备数据阶段一般就是把与任务相关的数据收集起来,然后通过建立网络模型,经过一定的迭代训练让网络学习收集来的数据特征,形成一个可以用的模型,之后就是通过使用模型来解决现实中的问题。假设有一组数据集,其中x和y的对应关系为y≈2x。本例子就是让神经网络通过学习这些样本,并找到其中的规律,让神...原创 2018-10-29 21:10:52 · 529 阅读 · 0 评论 -
退化学习率的应用
定义一个学习率变量,将其衰减系数设置好,并设置好迭代循环的次数,将每次迭代运算的次数与学习率打印出来,观察学习率按照次数退化的现象。本例中使用迭代循环计数变量global_step来记录循环次数,初始学习率为0.1,令其以每10次衰减0..9得速度来进行退化。import tensorflow as tfglobal_step = tf.Variable(0, trainable= F...原创 2018-10-31 16:01:50 · 443 阅读 · 0 评论 -
softmax交叉熵
softmax应用实例描述下面的代码中,假设有一个标签labels和一个网络输出值logits。这个例子以这两个值来计算一下3次试验。(1) 两次softmax试验:将输出的logits分别进行1次和2次softmax,观察两次的区别及意义。(2) 观察交叉熵:将步骤(1)中的两个值分别进行softmax_cross_entropy_with_logits,观察它们的区别。...原创 2018-10-30 18:06:29 · 770 阅读 · 0 评论 -
线性逻辑回归python
实例描述假设肿瘤医院想要用神经网络对已有的病例数据进行分类,数据的样本特征包括病人的年龄和肿瘤的大小,对应的标签应该是良性肿瘤还是恶性肿瘤1.生成样本集利用python生成一个二维数组“病人的年纪,肿瘤的大小”样本集,下面代码中generate为生成样本的函数,意思是按照指定的均值和方差生成固定数量的样本。import numpy as npimport matplotlib....原创 2018-11-06 15:21:40 · 339 阅读 · 0 评论 -
利用全连接网络将图片进行分类
实例描述:构建一个简单的多层神经网络,以拟合MNIST样本完成分类任务。1.定义网络参数在输入和输出之间使用两个隐藏层,每个层各256个节点,学习率使用0.001。import tensorflow as tfimport numpy as npfrom tensorflow.examples.tutorials.mnist import input_datamnist...原创 2018-11-09 16:00:51 · 2062 阅读 · 0 评论 -
浅谈Faster R-CNN 之 RPN
Fster R-CNN 框架分析1.整体框架Faster R-CNN算法由两个网络组成:RPN+Fast R-CNN。RPN(region proposal network)候选框提取网络,可提取出可能包含目标的候选区域,叫做感兴趣区域ROI(regions of interest)。Fast R-CNN对RoIs进行分类,并细化目标区域边框。2.RPN工作原理上图显示了RPN运作的整个过程,在最...原创 2018-05-24 20:10:23 · 835 阅读 · 0 评论