最近AI技术发展得有多迅猛?随着人工智能(AI),尤其是大型语言模型(LLMs)在多个行业领域的广泛应用,它们所带来的革命性变化预示着软件开发模式、方法和实践将经历深刻的转变。
近日,由中智凯灵主办的第七届 AiDD AI+研发数字峰会在北京成功举办。本届峰会,以“拥抱AI,重塑研发”为主题,汇聚了全国顶尖的技术专家、学者和行业领袖,共同探讨AI驱动的未来变革。
值得重点关注的是,随着人工智能技术在各个领域的深入应用,相关安全问题正在日益凸显。为此,本届峰会特别设立「大模型安全与对齐」主题论坛,就AI时代的潜在风险,安全与伦理治理方式的策略演变展开深入研讨。
概括来说,针对内容平台(如社交,音视频平台)、企业传播者、监管相关方等群体,当前AI生成内容管理存在四大核心痛点:
- 虚假信息泛滥
AI合成名人明星的图片、声音及视频,进行违规使用现象频发。尤其是用于营销场景,扰乱平台及市场秩序。
- 合规适配压力
《人工智能生成合成内容标识办法》施行,对AI生成合成内容提出明确标识要求,对于生成/传播平台需加强管理。
- 识别精准度不足
纯依赖人工审核/通用模型检测等单一策略易出现误判/漏判,难以清晰区分“AI生成”边界,给平台造成监管压力。
- 内容管理困难
AI生成内容类型多样(图片、文档、音视频等),识别难度大,传统审核方式效率低,难以实现全链路合规管控。
在「大模型安全与对齐」主题论坛上,有来自行业领先技术团队的专家针对以上痛点分享了AIGC时代数字内容风控的前沿研究成果,其中网易易盾的AI生成识别检测能力成为本次会议关注焦点,其技术深度与应用广度备受瞩目。
三大核心场景
专家现场揭秘了底层实现原理及应用效果,其标注检测模型采用“显性标识识别+隐性标识识别”双通道,全面覆盖图片、文档、点播视频、点播音频等主流内容形态,实现从生成到传播的全链路合规管控,覆盖三大核心场景:
- 人脸伪造识别,聚焦人脸局部特征判断是否换脸,支持图像与视频检测;
- AIGC生成图识别,通过整体特征分析辨别AI生成图像,适配图像与视频场景;
- 声纹伪造识别,针对机器语音转换、合成的音频进行检测,覆盖音频及视频中的音频内容。
四项核心能力
AI生成识别检测的核心能力在于精准识别,灵活适配多场景,着重体现在以下四个方面:
- 全内容类型覆盖
支持图片、文档、点播音视频、点播音频等主流内容形态的标识识别。
- 三级内容判定
将内容划分为“属于AI生成”“疑似AI生成”“非AI生成”,满足差异化处置需求。
- 全链路信息穿透
不仅识别标识有无,还能透出生成平台、传播平台,角色属性等增值信息,助力竞品识别和业务逻辑特殊处置。
- 多接口灵活适配
支持同步/批量/异步回调接口、Java&Go SDK等多种形式,可对接企业现有业务系统,适配多场景。
解析技术要点
此外,专家就其技术与性能要点,也做了详细的介绍:
技术上,AI生成识别检测依托垂直领域文本大模型、VL大模型、细粒度标签大模型、OCR大模型等基座,通过样本泛化生成、跨模态对齐等技术,目前易盾已将安全模型训练时长压缩至天级别,单标签精度显著提升,以应对日益复杂的网络环境。
性能上,核心API准确率达99.8%,年过滤数据超1万亿次,精细化分类达300+,既能满足生成内容标识的法规要求,又能有效预防AI诈骗、保护隐私与版权。
四大核心优势
网易易盾的AI生成识别检测能力之所以引发行业高度关注,其核心竞争力体现在:
首先,完全满足国标对显式/隐式标识的强制要求,支持日志留存6个月,助力企业符合行业规范,保障健康发展。
其次,“标识识别+模型检测”双轨制,相比纯模型检测准确率显著提升,减少“疑似”误判,提升业务处置效率。
第三,覆盖图片、文档、音视频全类型内容,提供标准化接口与SaaS平台,无需额外开发即可快速部署,降低接入成本。
最后,不仅满足合规需求,更能通过标识识别透出AI内容的生成来源、传播路径,为内容管理、风险控制等业务策略优化提供数据支撑。
944

被折叠的 条评论
为什么被折叠?



