Bundle Adjustment
在上一篇文章中,成功将三维重建扩展到了任意数量的图像,但是,随着图像的增多,累计误差会越来越大,从而影响最终的重建效果。要解决这个问题,需要用到Bundle Adjustment(下文简称BA)。
BA本质上是一个非线性优化算法,先来看看它的原型
min x ∑ i ρ i ( ∣ ∣ f i ( x i 1 , x i 2 , . . . , x i k ) ∣ ∣ 2 ) \min_x \sum_i{\rho_i(||f_i(x_{i1}, x_{i2}, ..., x_{ik})||^2)} xmini∑ρi(∣∣fi(xi1,xi2,...,xik)∣∣2)
其中 x x x是我们需要优化的参数, f f f一般称为代价函数(Cost Function), ρ \rho ρ为损失函数(Loss Function)。其中 f f f的返回值可能是一个向量,因此总的代价取该向量的2-范数。
对于三维重建中的BA,代价函数往往是反向投影误差,比如我们需要优化的参数有相机的内参(焦距、光心、畸变等)、外参(旋转和平移)以及点云,设图像 i i i的内参为 K i K_i Ki,外参为 R i R_i Ri和 T i T_i Ti