目前主流的SfM(Structure from Motion,运动结构恢复)可以分为两大类型,一种是全局式的,一种是增量式的。全局式(Global)sfm能够一次性得出所有的相机姿态和场景点结构。它通常先求得所有相机的位姿,然后再通过三角化获得场景点。其中相机位姿求解也分为两步:第一步是求解全局旋转,第二步是根据全局旋转求解全局平移向量。因为第二步的计算依赖于第一步的输出,因此第一步输出结果的准确性直接决定了第二步的结果的优劣,也就是说,全局旋转的求解是相机姿态估计的核心关键问题。全局式sfm只需要在最后进行一次BA(Bundle Adjustment),因此效率较高,但是其鲁棒性差,很容易受到outlier的影响而导致重建失败。增量式(Incremental)sfm则是一边三角化(triangulation)和pnp(perspective-n-points),一边进行局部BA。这类方法在每次添加图像后都要进行一次BA,效率较低,而且由于误差累积,容易出现漂移问题;但是增量式sfm的鲁棒性较高。著名的开源库Colmap就是通过增量式sfm的pi
增量式SfM详细流程介绍及实现方法
于 2020-12-12 22:24:28 首次发布