增量式SfM详细流程介绍及实现方法

29 篇文章 ¥29.90 ¥99.00
22 篇文章 ¥29.90 ¥99.00

  目前主流的SfM(Structure from Motion,运动结构恢复)可以分为两大类型,一种是全局式的,一种是增量式的。全局式(Global)sfm能够一次性得出所有的相机姿态和场景点结构。它通常先求得所有相机的位姿,然后再通过三角化获得场景点。其中相机位姿求解也分为两步:第一步是求解全局旋转,第二步是根据全局旋转求解全局平移向量。因为第二步的计算依赖于第一步的输出,因此第一步输出结果的准确性直接决定了第二步的结果的优劣,也就是说,全局旋转的求解是相机姿态估计的核心关键问题。全局式sfm只需要在最后进行一次BA(Bundle Adjustment),因此效率较高,但是其鲁棒性差,很容易受到outlier的影响而导致重建失败。增量式(Incremental)sfm则是一边三角化(triangulation)和pnp(perspective-n-points),一边进行局部BA。这类方法在每次添加图像后都要进行一次BA,效率较低,而且由于误差累积,容易出现漂移问题;但是增量式sfm的鲁棒性较高。著名的开源库Colmap就是通过增量式sfm的pi

### Incremental SfM vs Global SfM Differences and Use Cases #### Key Distinctions Between Incremental and Global SfM Structure from Motion (SfM) techniques aim to reconstruct a 3D structure from multiple images of the same scene. The two main approaches are incremental and global methods. Incremental SfM builds reconstructions progressively by adding one image at a time into an existing model. This method starts with a small set of initial views and gradually expands it as more images get incorporated[^1]. Global SfM, on the other hand, treats all input images simultaneously within a single optimization framework. It seeks solutions that best fit all observations collectively rather than sequentially. #### Advantages and Disadvantages Incremental SfM offers real-time processing capabilities since each new frame can be processed independently once previous frames have been integrated successfully. However, this approach may accumulate errors over time due to its sequential nature which could lead to drift issues in large-scale environments. Global SfM provides higher accuracy because it optimizes globally across all available data points concurrently. Yet, computational complexity increases significantly when handling larger datasets making real-time applications challenging without substantial computing resources. ```python import numpy as np from scipy.optimize import least_squares def optimize_global_SfM(params): # Simplified example function for optimizing parameters using Least Squares Method. residuals = compute_residuals(params) result = least_squares(residuals, params) return result.x def add_image_incrementally(current_model, next_image): updated_model = update_structure_and_motion_estimates(current_model, next_image) refined_model = refine_with_bundle_adjustment(updated_model) return refined_model ``` #### Application Scenarios For scenarios requiring immediate feedback such as augmented reality experiences or autonomous navigation systems where timely updates about surroundings matter most; incremental algorithms prove beneficial despite potential long-term inaccuracies. Conversely, projects prioritizing precision like photogrammetry tasks involving aerial imagery analysis benefit greatly from employing global strategies even though they might require longer computation times upfront before delivering final results.
评论 24
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zeeq_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值