Dijkstra算法

Dijkstra算法模拟演示

目录

  1. Dijkstra算法简介
  2. 算法步骤
  3. 示例图
  4. 算法执行过程
  5. 总结

1. Dijkstra算法简介

  • 用途:计算从单个源点到所有其他节点的最短路径
  • 特点:适用于权重非负的有向或无向图
  • 核心思想:每次选择具有最小暂时距离的未访问节点,更新其邻居的距离

2. 算法步骤

  1. 初始化

    • 设置起始节点的距离为0,其余节点的距离为∞(无穷大)
    • 所有节点的前驱设为None
    • 建立一个未访问节点的集合
  2. 迭代

    • 从未访问节点中选取距离最小的节点u

    • 将节点u标记为已访问

    • 对于u的所有邻居节点v

      • 如果v未访问,且通过uv的距离小于当前v的距离:

        • 更新v的距离为dist[u] + weight(u, v)
        • 设置v的前驱为u
  3. 重复步骤2,直到所有节点都被访问


3. 示例图

假设有以下加权无向图:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传 (此处需自行绘制或插入示例图)

  • 节点集合A, B, C, D, E

  • 边及权重

    • A - B:6
    • A - D:1
    • B - C:5
    • B - D:2
    • B - E:2
    • C - E:5
    • D - E:1
  • 起始节点A


4. 算法执行过程

初始化
节点距离 (dist)前驱 (prev)访问状态
A0None未访问
BNone未访问
CNone未访问
DNone未访问
ENone未访问
步骤1
  • 选择节点:距离最小的未访问节点A

  • 标记A设为已访问

  • 更新邻居

    • 节点B

      • 新距离:0 + 6 = 6(原距离为∞)
      • 更新dist[B] = 6prev[B] = A
    • 节点D

      • 新距离:0 + 1 = 1(原距离为∞)
      • 更新dist[D] = 1prev[D] = A
步骤2
  • 选择节点:距离最小的未访问节点Ddist[D] = 1

  • 标记D设为已访问

  • 更新邻居

    • 节点B

      • 新距离:1 + 2 = 3(原距离为6)
      • 更新dist[B] = 3prev[B] = D
    • 节点E

      • 新距离:1 + 1 = 2(原距离为∞)
      • 更新dist[E] = 2prev[E] = D
步骤3
  • 选择节点:距离最小的未访问节点Edist[E] = 2

  • 标记E设为已访问

  • 更新邻居

    • 节点B

      • 新距离:2 + 2 = 4(原距离为3)
      • 不更新(因为4 > 3)
    • 节点C

      • 新距离:2 + 5 = 7(原距离为∞)
      • 更新dist[C] = 7prev[C] = E
步骤4
  • 选择节点:距离最小的未访问节点Bdist[B] = 3

  • 标记B设为已访问

  • 更新邻居

    • 节点C

      • 新距离:3 + 5 = 8(原距离为7)
      • 不更新(因为8 > 7)
步骤5
  • 选择节点:距离最小的未访问节点Cdist[C] = 7
  • 标记C设为已访问
结果汇总
节点距离 (dist)前驱 (prev)访问状态
A0None已访问
B3D已访问
C7E已访问
D1A已访问
E2D已访问

5. 总结

  • 最短路径

    • ABA -> D -> B,距离为3
    • ACA -> D -> E -> C,距离为7
    • ADA -> D,距离为1
    • AEA -> D -> E,距离为2
  • 路径重建:根据前驱节点prev字段,可以反向追溯最短路径


当然可以!下面我将详细证明Dijkstra算法的正确性。


证明:Dijkstra算法的正确性

Dijkstra算法用于解决单源最短路径问题,即在一个加权有向图中,找到给定起点到所有其他节点的最短路径。该算法假设所有边的权重都是非负数。以下是对该算法正确性的详细证明。

1. 问题描述
  • 给定:一个加权有向图 ( G(V, E) ),其中:
    • ( V ) 是节点集合。
    • ( E ) 是边集合,每条边 ( (u, v) ) 具有非负权重 ( w(u, v) \geq 0 )。
  • 目标:找到从起始节点 ( s ) 到所有其他节点 ( v \in V ) 的最短路径,即最小的路径权重和。
2. 算法描述

Dijkstra算法主要步骤:

  1. 初始化

    • 对所有节点 ( v \in V ),设置距离 ( dist[v] = \infty ),前驱节点 ( prev[v] = \text{undefined} )。
    • 对起始节点 ( s ),设置 ( dist[s] = 0 )。
    • 初始化一个未访问节点集合 ( Q = V )。
  2. 迭代

    • 当 ( Q ) 非空时:
      • 从 ( Q ) 中选取使 ( dist[u] ) 最小的节点 ( u )。
      • 从 ( Q ) 中移除 ( u )。
      • 对 ( u ) 的所有邻居 ( v ):
        • 如果 ( dist[v] > dist[u] + w(u, v) ),则更新:
          • ( dist[v] = dist[u] + w(u, v) )。
          • ( prev[v] = u )。
  3. 结果

    • 对于每个节点 ( v \in V ),最短路径长度为 ( dist[v] ),路径可通过 ( prev[v] ) 追溯。
3. 正确性证明
目标

证明:对于每个节点 ( v \in V ),在算法终止时,( dist[v] ) 等于从 ( s ) 到 ( v ) 的最短路径长度。

思路
  • 使用 数学归纳法反证法
  • 关键是证明在每次迭代中,被选取的节点 ( u ) 的 ( dist[u] ) 等于从 ( s ) 到 ( u ) 的最短路径长度。
详细证明
  1. 基础情况

    • 初始时,( dist[s] = 0 ),显然是正确的。
    • 对于其他节点 ( v \neq s ),初始 ( dist[v] = \infty )。
  2. 归纳假设

    • 假设在某一步之前,已确定的节点集合 ( S ) 中,对所有 ( u \in S ),( dist[u] ) 等于从 ( s ) 到 ( u ) 的最短路径长度。
    • 我们要证明,在下一步中选择的节点 ( u ),其 ( dist[u] ) 也满足上述性质。
  3. 选择最小 ( dist ) 的节点 ( u )

    • 由于 ( u ) 是在未访问节点集合 ( Q ) 中具有最小 ( dist ) 值的节点。
    • 我们需要证明:从 ( s ) 到 ( u ) 的任何路径,其长度不可能小于 ( dist[u] )。
  4. 反证法

    • 假设:存在一条从 ( s ) 到 ( u ) 的路径 ( P ),其权重总和小于 ( dist[u] )。
    • 这条路径必须经过若干节点,我们可以将其划分为两部分:
      • 从 ( s ) 到 ( x ) 的子路径,其中 ( x \in S )(已访问节点)。
      • 从 ( x ) 到 ( u ) 的边或路径,其中 ( x ) 的后继节点在 ( Q ) 中。
    • 根据归纳假设,( dist[x] ) 是从 ( s ) 到 ( x ) 的最短路径长度。
    • 因此,从 ( s ) 到 ( u ) 的路径长度应为 ( dist[x] + \text{路径从 } x \text{ 到 } u \text{ 的权重} )。
  5. 矛盾

    • 由于 ( dist[u] ) 在上一轮未被更新为更小的值,说明:
      • ( dist[u] \leq dist[x] + w(x, u) )。
    • 但根据假设,存在更短的路径使得:
      • ( dist[u] > dist[x] + w(x, u) )。
    • 这产生了矛盾。
  6. 结论

    • 假设不成立,因此,不存在比 ( dist[u] ) 更短的路径。
    • 所以,当节点 ( u ) 被选中并移出 ( Q ) 时,( dist[u] ) 就是从 ( s ) 到 ( u ) 的最短路径长度。
关键性质
  • 贪心选择性质:每次选择未访问节点中距离最小的节点,其当前路径即为最短路径。
  • 三角不等式:由于边的权重非负,因此不会存在通过其他路径比当前已知路径更短的情况。
4. 边权重非负的必要性
  • 如果图中存在负权重的边,可能会导致算法错误。
  • 例如,已确定的最短路径可能被后续经过负权重边的路径所更新。
5. 示例验证
  • 在实际运行中,Dijkstra算法的更新过程符合上述性质。
  • 可以通过具体例子来验证算法在每一步的正确性。
6. 结论
  • 通过数学归纳和反证法,我们证明了Dijkstra算法能够正确计算从起始节点到所有其他节点的最短路径长度。
  • 关键在于:
    • 每次选择的节点,其 ( dist ) 值即为最短路径长度。
    • 已确定的最短路径不会被后续更新。
    • 边的非负权重保证了贪心选择的正确性。

希望这个证明能帮助你理解Dijkstra算法的正确性。如有任何疑问,欢迎提问!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值