域扩张理论:数学王国的扩疆之路

域扩张理论:数学王国的扩疆之路

1. 引言

域是代数学中最基本的代数结构之一,定义为同时具有加法群和乘法群(不包括零元素)结构的集合,且两种运算满足分配律。域扩张理论研究了如何从一个已知的域(称为基域)出发,构造包含它的更大的域(称为扩域)。这一理论不仅是抽象代数的核心内容,也是解决许多经典数学问题的关键工具。

本文将系统地介绍域扩张理论的基本概念、类型、性质及其应用,帮助读者理解这一数学分支如何优雅地解决了古典数学问题,并为现代科学技术提供了理论支撑。

基域 F
扩域 E:F
代数扩张
超越扩张
有限扩张
无限代数扩张
单代数扩张 F(α)
多重代数扩张
二次扩张
循环扩张
分裂域
代数闭包
单超越扩张 F(t)
多重超越扩张
按伽罗瓦群分类
正规扩张
非正规扩张
伽罗瓦扩张
纯扩张
根式可解扩张
非根式可解扩张

2. 域扩张的基本概念

2.1 域扩张的定义

定义 2.1.1:设 F 是一个域,E 是包含 F 的一个域(即 F 是 E 的子域),则称 E 是 F 的一个扩域,记作 E/F。

例如:

  • 有理数域 ℚ 是整数环 ℤ 的分式域
  • 实数域 ℝ 是有理数域 ℚ 的扩域
  • 复数域 ℂ 是实数域 ℝ 的扩域

在扩域 E/F 中,我们通常称 F 为基域,E 为扩域

2.2 向量空间结构与扩张度

定义 2.2.1:设 E/F 是一个扩域,则 E 可以视为 F 上的向量空间,其中向量加法就是 E 中的加法,标量乘法就是 F 中元素与 E 中元素的乘法。

定义 2.2.2:扩域 E/F 的扩张度(或称为维数)是指 E 作为 F 上向量空间的维数,记作 [E:F]。如果这个维数是有限的,则称 E/F 是有限扩张;否则称为无限扩张

例 2.2.1:考虑扩域 ℚ(√2)/ℚ,即将 √2 添加到有理数域得到的域。可以证明任何 ℚ(√2) 中的元素都可以唯一表示为 a + b√2 的形式,其中 a, b ∈ ℚ。因此,{1, √2} 构成了 ℚ(√2) 作为 ℚ-向量空间的一组基,所以 [ℚ(√2):ℚ] = 2。

2.3 扩张度的乘法定理

定理 2.3.1(扩张度的乘法定理):设有域的塔 F ⊂ K ⊂ E,则:
[E:F] = [E:K] × [K:F]

证明
设 {α₁, α₂, …, αₘ} 是 K/F 的一组基,{β₁, β₂, …, βₙ} 是 E/K 的一组基。我们断言,集合 {αᵢβⱼ | 1 ≤ i ≤ m, 1 ≤ j ≤ n} 是 E/F 的一组基。

首先证明线性独立性:假设 ∑ᵢⱼ cᵢⱼαᵢβⱼ = 0,其中 cᵢⱼ ∈ F。对固定的 j,设 dⱼ = ∑ᵢ cᵢⱼαᵢ ∈ K,则 ∑ⱼ dⱼβⱼ = 0。由于 {βⱼ} 在 K 上线性独立,所以对所有 j,dⱼ = 0。又因为 {αᵢ} 在 F 上线性独立,所以对所有 i 和 j,cᵢⱼ = 0。

接下来证明张成性:对任意 γ ∈ E,由于 {βⱼ} 是 E/K 的基,存在 kⱼ ∈ K 使得 γ = ∑ⱼ kⱼβⱼ。对每个 kⱼ,又存在 fᵢⱼ ∈ F 使得 kⱼ = ∑ᵢ fᵢⱼαᵢ。代入得到 γ = ∑ᵢⱼ fᵢⱼαᵢβⱼ,表明 {αᵢβⱼ} 张成 E。

因此,[E:F] = m × n = [K:F] × [E:K]。证毕。

例 2.3.1:考虑扩域链 ℚ ⊂ ℚ(√2) ⊂ ℚ(√2, √3)。已知 [ℚ(√2):ℚ] = 2,可以证明 [ℚ(√2, √3):ℚ(√2)] = 2。根据扩张度乘法定理,[ℚ(√2, √3):ℚ] = 2 × 2 = 4。实际上,{1, √2, √3, √6} 构成了 ℚ(√2, √3) 作为 ℚ-向量空间的一组基。

3. 代数扩张与超越扩张

3.1 代数元与代数扩张

定义 3.1.1:设 E/F 是一个扩域,元素 α ∈ E 称为 F 上的代数元,如果存在非零多项式 f(x) ∈ F[x],使得 f(α) = 0。如果 α 不是 F 上的代数元,则称 α 为 F 上的超越元

定义 3.1.2:如果扩域 E/F 中的每个元素都是 F 上的代数元,则称 E/F 为代数扩张。否则,称为超越扩张

例 3.1.1

  • √2 是 ℚ 上的代数元,因为它满足多项式方程 x² - 2 = 0
  • i(虚数单位)是 ℝ 上的代数元,因为它满足方程 x² + 1 = 0
  • π 和 e 都是 ℚ 上的超越元(这是非平凡的结果)

3.2 最小多项式与代数元的性质

定义 3.2.1:设 α 是 F 上的代数元,则存在唯一的首一不可约多项式 p(x) ∈ F[x],使得 p(α) = 0。这个多项式称为 α 在 F 上的最小多项式,记作 irr(α, F)。

定理 3.2.1:设 α 是 F 上的代数元,其最小多项式为 p(x),则:

  1. p(x) 整除任何满足 f(α) = 0 的多项式 f(x) ∈ F[x]
  2. [F(α):F] = deg(p(x))
  3. F(α) ≅ F[x]/(p(x)),其中 F(α) 表示由 F 和 α 生成的域,(p(x)) 表示由 p(x) 生成的主理想

证明(部分):
对于第2点,我们可以证明集合 {1, α, α², …, α^(n-1)}(其中 n = deg(p(x)))是 F(α)/F 的一组基。这组元素的线性独立性来自 p(x) 的最小性,而张成性来自于任何 α 的更高次幂都可以通过 p(α) = 0 转化为低次幂的线性组合。

域 E 中的元素
代数元
超越元
满足多项式方程
最小多项式是唯一的
F(α)/F 是有限扩张
例: √2, √3, i, ∛5, ζₙ
不满足任何多项式方程
F(α)/F 同构于有理函数域
F(α)/F 是无限扩张
例: π, e, ln(2), 绝大多数实数
根据最小多项式分类
二次扩张(次数为2)
循环扩张(可分解为单扩张的塔)
根式扩张(可用根号表示)

3.3 代数扩张的基本性质

定理 3.3.1:代数扩张满足以下性质:

  1. 有限扩张必定是代数扩张
  2. 代数扩张的代数扩张仍是代数扩张
  3. 两个代数扩张的复合仍是代数扩张
  4. 若 E/F 是代数扩张,K 是 E 的子域且包含 F,则 K/F 也是代数扩张

证明(部分):
对于第1点,设 [E:F] = n < ∞,对于任意 α ∈ E,集合 {1, α, α², …, α^n} 包含 n+1 个元素,必定线性相关。因此存在不全为零的系数 a₀, a₁, …, aₙ ∈ F,使得 a₀ + a₁α + … + aₙα^n = 0,即 α 满足 F 上的非零多项式,所以 α 是代数元。

3.4 超越扩张的性质

定理 3.4.1:设 t 是 F 上的超越元,则:

  1. F(t) 同构于 F 上的有理函数域 F(x)
  2. F(t)/F 是无限维的
  3. F(t) 中的任何元素都可以表示为形如 f(t)/g(t) 的分式,其中 f(x), g(x) ∈ F[x],且 g(t) ≠ 0

4. 有限扩张的结构

4.1 单扩张

定义 4.1.1:如果存在元素 α ∈ E,使得 E = F(α),则称 E/F 为单扩张。根据 α 的性质,单扩张可分为代数单扩张超越单扩张

定理 4.1.1:对于代数单扩张 F(α)/F,其中 α 的最小多项式为 p(x),则:

  1. F(α) 中的任何元素都可以唯一表示为 a₀ + a₁α + … + aₙ₋₁α^(n-1) 的形式,其中 n = deg(p(x)),a₀, …, aₙ₋₁ ∈ F
  2. [F(α):F] = deg(p(x))

例 4.1.1:考虑单扩张 ℚ(√2)/ℚ。√2 的最小多项式是 p(x) = x² - 2,因此 [ℚ(√2):ℚ] = 2,且 ℚ(√2) 中的任何元素都可以唯一表示为 a + b√2 的形式,其中 a, b ∈ ℚ。

4.2 原根与循环扩张

定义 4.2.1:设 n > 0 是整数,n 次原根是满足方程 x^n = 1 且阶为 n 的复数(即 x^n = 1 但对任何 0 < m < n,x^m ≠ 1)。通常用 ζₙ 表示。

定义 4.2.2:如果 E = F(ζₙ),其中 ζₙ 是 n 次原根,则称 E/F 为循环扩张

定理 4.2.1:设 n > 0,ζₙ 是 n 次原根,则:

  1. ζₙ 的最小多项式是 n 次分圆多项式 Φₙ(x)
  2. [ℚ(ζₙ):ℚ] = φ(n),其中 φ 是欧拉函数

例 4.2.1:考虑 n = 8 的情况。8次原根是 ζ₈ = e^(2πi/8) = cos(π/4) + i·sin(π/4)。欧拉函数 φ(8) = 4,因此 [ℚ(ζ₈):ℚ] = 4。

4.3 二次扩张

定义 4.3.1:如果 [E:F] = 2,则称 E/F 为二次扩张

定理 4.3.1:任何二次扩张 E/F 都可以表示为 E = F(√d),其中 d ∈ F 且不是 F 中的平方数。

例 4.3.1

  • ℚ(√2)/ℚ 是二次扩张
  • ℚ(√-1)/ℚ = ℚ(i)/ℚ 是二次扩张
  • ℝ(i)/ℝ = ℂ/ℝ 是二次扩张

4.4 根式扩张

定义 4.4.1:如果存在 α ∈ E 使得 α^n ∈ F 对某个正整数 n 成立,且 E = F(α),则称 E/F 为纯根式扩张

定义 4.4.2:如果存在域的链 F = F₀ ⊂ F₁ ⊂ … ⊂ Fₘ = E,其中每个 Fᵢ₊₁/Fᵢ 都是纯根式扩张,则称 E/F 为根式扩张

定理 4.4.1:若 α^n ∈ F,其中 n > 0 是整数,则:

  1. 如果 char(F) 不整除 n,或者 α^n 不是 F 中的 p 次幂(其中 p = char(F)),则 α 的最小多项式是 x^n - α^n
  2. [F(α):F] = n 或 [F(α):F] 整除 n

例 4.4.1:考虑扩张 ℚ(∛2)/ℚ。∛2 的最小多项式是 x³ - 2,因此 [ℚ(∛2):ℚ] = 3。

5. 分裂域与代数闭包

5.1 分裂域

定义 5.1.1:设 f(x) ∈ F[x] 是一个多项式,如果存在扩域 E/F,使得 f(x) 在 E 上可以分解为一次因式的乘积,即 f(x) = a(x-α₁)(x-α₂)···(x-αₙ),其中 a ∈ F,α₁, …, αₙ ∈ E,且 E = F(α₁, …, αₙ),则称 E 是 f(x) 在 F 上的分裂域

定理 5.1.1:对于任何多项式 f(x) ∈ F[x],都存在唯一的(同构意义下)分裂域。

例 5.1.1:多项式 f(x) = x² + 1 ∈ ℝ[x] 的分裂域是 ℂ = ℝ(i),因为 f(x) = (x-i)(x+i)。

例 5.1.2:多项式 f(x) = x³ - 2 ∈ ℚ[x] 的分裂域是 ℚ(∛2, ω),其中 ω 是三次原根,因为 f(x) = (x-∛2)(x-ω∛2)(x-ω²∛2)。

多项式 f(x) ∈ F[x]
寻找 f(x) 的根
α₁, α₂, ..., αₙ
构造 F(α₁, α₂, ..., αₙ)
分裂域 E
例1: x² + 1 ∈ ℝ[x]
根: i, -i
分裂域: ℝ(i) = ℂ
例2: x³ - 2 ∈ ℚ[x]
根: ∛2, ω∛2, ω²∛2
分裂域: ℚ(∛2, ω)
例3: x⁴ - 1 ∈ ℚ[x]
根: 1, -1, i, -i
分裂域: ℚ(i)

5.2 代数闭包

定义 5.2.1:域 F 的代数闭包是包含 F 的最小代数闭域,记作 F̄。代数闭域是指其上的任何非常数多项式都有根的域。

定理 5.2.1

  1. 任何域都有代数闭包,且在同构意义下唯一
  2. F̄/F 是代数扩张
  3. 如果 E/F 是代数扩张,则存在 F̄ 到包含 E 的代数闭包的同态

例 5.2.1

  • ℚ 的代数闭包是代数数域 Ā
  • ℝ 的代数闭包是复数域 ℂ
  • 有限域 F_q 的代数闭包是所有有限域 F_{q^n} 的并

6. 伽罗瓦理论与域扩张

6.1 正规扩张与伽罗瓦扩张

定义 6.1.1:设 E/F 是有限扩张,如果 E 是某个 F 上多项式的分裂域,则称 E/F 为正规扩张

定义 6.1.2:正规扩张 E/F 称为伽罗瓦扩张,如果 F 的特征为 0 或者 E/F 是可分扩张(即 E 中每个元素的最小多项式在 F 上没有重根)。

定理 6.1.1(伽罗瓦理论的基本定理):设 E/F 是伽罗瓦扩张,G = Gal(E/F) 是 E/F 的伽罗瓦群(即 F 上的 E 自同构群),则:

  1. 存在 F 的中间域与 G 的子群之间的一一对应
  2. 如果 K 是 F 和 E 之间的中间域,对应的子群是 Gal(E/K)
  3. 如果 H 是 G 的子群,对应的中间域是 E^H(H 的不动点集)
  4. [E:K] = |Gal(E/K)|,[K:F] = [G:Gal(E/K)]
  5. K/F 是正规扩张当且仅当 Gal(E/K) 是 G 的正规子群,此时 Gal(K/F) ≅ G/Gal(E/K)

6.2 解方程的应用

伽罗瓦理论最著名的应用是证明了一般五次及以上方程没有根式解。

定理 6.2.1:一般 n 次方程有根式解当且仅当其伽罗瓦群是可解群。

推论 6.2.1:一般五次及以上方程没有根式解,因为对称群 S_n(n ≥ 5)不是可解群。

例 6.2.1:考虑方程 x⁵ - 1 = 0。其伽罗瓦群是循环群 C₅,是可解的,因此该方程有根式解:x = e^(2πik/5)(k = 0, 1, 2, 3, 4)。

7. 域扩张在几何作图问题中的应用

7.1 尺规作图与二次扩张

定理 7.1.1:一个数 α 能用尺规作图(从给定单位长度出发)当且仅当存在一个扩张塔 ℚ = F₀ ⊂ F₁ ⊂ … ⊂ Fₙ,其中 α ∈ Fₙ 且每个扩张 Fᵢ₊₁/Fᵢ 都是二次扩张。

推论 7.1.2:如果 α 能用尺规作图,则 [ℚ(α):ℚ] 是 2 的幂。

例 7.1.1

  • 正多边形可以用尺规作图,当且仅当其边数是 2^k 或 2^k·p₁···pₘ 的形式,其中 p₁, …, pₘ 是不同的费马素数(形如 2(2n) + 1 的素数)
  • 三等分任意角不可能用尺规作图,因为它涉及求解 x³ - 3x + 1 = 0,其伽罗瓦群不是 2 的幂
  • 倍立方(即作出边长为 ∛2 的立方体)不可能用尺规作图,因为 [ℚ(∛2):ℚ] = 3 不是 2 的幂

7.2 尺规与圆规作图

定理 7.2.1:一个数 α 能用尺规和圆规作图当且仅当存在一个嵌套的二次扩张塔,使得 α 属于这个塔的顶层域。

例 7.2.1

  • 正十七边形可以用尺规和圆规作图,这是高斯的重要发现
  • 正七边形不能用尺规和圆规作图,因为 cos(2π/7) 的最小多项式次数为 3

8. 现代应用

8.1 代数几何中的应用

域扩张理论是代数几何的基础工具之一,用于研究代数簇的性质。

8.2 密码学中的应用

例 8.2.1:有限域扩张在现代密码学中有广泛应用:

  • 椭圆曲线密码学使用有限域上的椭圆曲线
  • AES 加密算法在 GF(2⁸) 上进行操作
  • Reed-Solomon 纠错码基于有限域多项式的性质

8.3 计算机代数中的应用

域扩张理论是符号计算和计算机代数系统(如 Mathematica、Maple、SageMath 等)处理代数表达式的理论基础。

9. 总结与展望

域扩张理论是代数学中最优雅、最深刻的理论之一,它不仅解答了古典几何问题的可解性,也为现代数学和计算机科学提供了强大工具。从最简单的数域扩张到高深的伽罗瓦理论,域扩张理论展示了数学的统一性和美感。

随着计算机代数系统的发展和密码学的需求,域扩张理论仍在不断发展和应用。特别是在后量子密码学领域,基于代数扩域的密码系统可能成为量子计算时代的安全保障。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值