Wanda && Aidem

更多精彩,欢迎进入:http://aidem.lingw.net/

排序:
默认
按更新时间
按访问量

VS2010问题汇总

问题1:error C3872: "0xa0": 此字符不允许在标识符中使用 error C3872: "0xa0": 此字符不允许在标识符中使用 或者 error C3872: '0xa0': this character...

2017-09-05 09:51:07

阅读数:138

评论数:0

【数字图像处理】傅里叶变换在图像处理中的应用

from:https://www.cnblogs.com/tenderwx/p/5245859.html 1.理解二维傅里叶变换的定义 1.1二维傅里叶变换 二维Fourier变换: 逆变换: 1.2二维离散傅里叶变换 一个图像尺寸为M×N的 函数的离散傅里叶变换由以下等式给出...

2018-08-14 19:19:56

阅读数:6

评论数:0

如何通俗易懂地解释欧拉公式(e^πi+1=0)?

from:https://www.zhihu.com/question/41134540 http://www.matongxue.com/madocs/8.html  

2018-08-14 19:07:50

阅读数:6

评论数:0

深入浅出的讲解傅里叶变换(真正的通俗易懂)

原文出处: 韩昊    1 2 3 4 5 6 7 8 9 10 作 者:韩 昊 知 乎:Heinrich 微 博:@花生油工人 知乎专栏:与时间无关的故事   ...

2018-08-10 19:56:54

阅读数:21

评论数:0

数字图像处理-频率域滤波原理

from:https://blog.csdn.net/forrest02/article/details/55510711?locationNum=15&fps=1 写在前面的话 作者是一名在读的硕士研究僧,方向是图像处理。由于图像处理是一门相对复杂的学科,作者在课堂上...

2018-08-10 19:06:11

阅读数:5

评论数:0

数字图像处理:各种变换滤波和噪声的类型和用途总结

摘自http://imgtec.eetrend.com/blog/4564  一、基本的灰度变换函数 1.1图像反转  适用场景:增强嵌入在一幅图像的暗区域中的白色或灰色细节,特别是当黑色的面积在尺寸上占主导地位的时候。 1.2对数变换(反对数变换与其相反)  过程:将输入中范围较窄的低灰度...

2018-08-09 20:29:51

阅读数:6

评论数:0

浅析“高斯白噪声”,“泊松噪声”,“椒盐噪声”的区别

from:https://www.jianshu.com/p/67f909f3d0ce 在图像处理的过程中,一般情况下都进行图像增强,图像增强主要包括“空域增强”和“频域增强”, 空域增强包括平滑滤波和锐化滤波。 平滑滤波,就是将图像模糊处理,减少噪声。那么在滤波之前,首先需要了解一下噪声的种...

2018-08-09 20:23:39

阅读数:7

评论数:0

几种边缘检测算子的比较Roberts,Sobel,Prewitt,LOG,Canny

from:https://blog.csdn.net/gdut2015go/article/details/46779251 边缘检测是图像处理和计算机视觉中的基本问题,边缘检测的目的是标识数字图像中亮度变化明显的点。图像属性中的显著变化通常反映了属性的重要事件和变化。这些包括:深度上的不连续、...

2018-08-09 19:58:13

阅读数:8

评论数:0

JPG PNG GIF BMP图片格式的区别

类型 优点 缺点 应用场景 相同图片大小比较 BMP 无损压缩,图质最好 文件太大,不利于网络传输   152K GIF 动画存储格式 最多256色,画质差   53K PNG 可保存透明背景的图片 画...

2018-08-03 16:14:56

阅读数:18

评论数:0

图像处理的灰度化和二值化

from:http://blog.sina.com.cn/s/blog_13c6397540102wqtt.html 在图像处理中,用RGB三个分量(R:Red,G:Green,B:Blue),即红、绿、蓝三原色来表示真彩色,R分量,G分量,B分量的取值范围均为0~255,比如电脑屏幕上的一个红...

2018-08-02 13:51:03

阅读数:17

评论数:0

ICP算法理解

from:https://blog.csdn.net/linear_luo/article/details/52576082 1 经典ICP   ICP的目的很简单,就是求解两堆点云之间的变换关系。怎么做呢?思路很自然,既然不知道R和t(针对刚体运动),那我们就假设为未知量呗,然后通过某些方法...

2018-07-31 16:33:42

阅读数:30

评论数:0

立体匹配十大概念综述---立体匹配算法介绍

from:https://blog.csdn.net/wintergeng/article/details/51049596 一、概念         立体匹配算法主要是通过建立一个能量代价函数,通过此能量代价函数最小化来估计像素点视差值。立体匹配算法的实质就是一个最优化求解问题,通过建立合理...

2018-07-30 15:08:30

阅读数:15

评论数:0

模板匹配算法

from:https://blog.csdn.net/zhi_neng_zhi_fu/article/details/51029864 模板匹配(Template Matching)算法 模板匹配(Template Matching)是图像识别中最具代表性的方法之一。它从待识别图像中提取若干特...

2018-07-27 11:13:59

阅读数:24

评论数:0

Machine Learning(Stanford)| 斯坦福大学机(吴恩达)器学习笔记【汇总】

from:https://blog.csdn.net/m399498400/article/details/52556168   定义本课程常用符号 训练数据:机器用来学习的数据 测试数据:用来考察机器学习效果的数据,相当于考试。 m = 训练样本的数量(训练集的个数) x = 输入的特征...

2018-07-25 20:43:57

阅读数:33

评论数:0

libSVM分类小例C++

from:http://www.doczj.com/list_31/ 使用libSVM求解分类问题的C++小例 1.libSVM简介 训练模型的结构体 struct svm_problem//储存参加计算的所有样本 {       int l; //记录样本总数       do...

2018-07-19 16:58:36

阅读数:13

评论数:0

libsvm C++ 代码参数说明汇总

几个重要的数据结构  2.1 struct svm_problem { int l; // 记录样本的总数 double *y; // 样本所属的标签(+1, -1) struct svm_node **x; // 指向样本数据的二维数组(即一个矩阵,...

2018-07-19 16:13:32

阅读数:16

评论数:0

【机器学习实战之一】:C++实现K-近邻算法KNN

本文不对KNN算法做过多的理论上的解释,主要是针对问题,进行算法的设计和代码的注解。 KNN算法: 优点:精度高、对异常值不敏感、无数据输入假定。 缺点:计算复杂度高、空间复杂度高。 适用数据范围:数值型和标称性。 工作原理:存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都...

2018-07-19 14:25:45

阅读数:55

评论数:0

c++调用Libsvm

libSVM中的readme中文版:http://blog.csdn.net/carson2005/article/details/6539192   LibSVM的package中的Readme文件中介绍了怎样具体的使用LibSvm,可以在Dos下以命令形式进行调用,也可以用程序包中提供的G...

2018-07-19 13:22:59

阅读数:17

评论数:0

libSVM介绍(二)

from:https://blog.csdn.net/carson2005/article/details/6539192  鉴于libSVM中的readme文件有点长,而且,都是采用英文书写,这里,我把其中重要的内容提炼出来,并给出相应的例子来说明其用法,大家可以直接参考我的代码来调用libS...

2018-07-18 18:49:28

阅读数:18

评论数:0

使用libsvm中的svm_cross_validation函数进行交叉验证

from:https://blog.csdn.net/tao1107291820/article/details/51581322 在libsvm的使用中,为了得到更好的c、gama参数,可以通过多次使用libsvm中的svm_cross_validation函数进行参数寻优,下面是svm_cr...

2018-07-18 16:52:27

阅读数:15

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭