高中数学排列组合公式/排列组合计算公式

***************************************************

更多精彩,欢迎进入:http://shop115376623.taobao.com

***************************************************


排列 P------和顺序有关

组合 C -------不牵涉到顺序的问题

排列分顺序,组合不分

例如 把5本不同的书分给3个人,有几种分法.   "排列"

把5本书分给3个人,有几种分法          "组合"

1.排列及计算公式

从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m)表示.

p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).

2.组合及计算公式

从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号

c(n,m) 表示.

c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);

c(n,m)=n*(n-1)*……*(n-m+1)/m!

c(n,m)=c(n,n-m);

3.其他排列与组合公式

从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.

n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为

n!/(n1!*n2!*...*nk!).

k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).

排列(Pnm(n为下标,m为上标))

Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n

组合(Cnm(n为下标,m为上标))

Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m

2008-07-08 13:30

公式P是指排列,从N个元素取R个进行排列。公式C是指组合,从N个元素取R个,不进行排列。N-元素的总个数 R参与选择的元素个数 !-阶乘 ,如    9!=9*8*7*6*5*4*3*2*1

从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1);

因为从n到(n-r+1)个数为n-(n-r+1)=r

举例:

Q1:    有从1到9共计9个号码球,请问,可以组成多少个三位数?

A1:     123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列P”计算范畴。

上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合, 我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)

Q2:    有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?

A2:     213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于“组合C”计算范畴。

上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1

排列、组合的概念和公式典型例题分析

例1  设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法?

解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有 种不同方法.

(2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有 种不同方法.

点评   由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.

例2 排成一行,其中 不排第一, 不排第二, 不排第三, 不排第四的不同排法共有多少种?

解   依题意,符合要求的排法可分为第一个排 、 、 中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出:

∴ 符合题意的不同排法共有9种.

点评   按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型.

例3 判断下列问题是排列问题还是组合问题?并计算出结果.

(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?

(2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?

(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?

(4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法?

分析 (1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析.

(1)①是排列问题,共用了 封信;②是组合问题,共需握手 (次).

(2)①是排列问题,共有 (种)不同的选法;②是组合问题,共有 种不同的选法.

(3)①是排列问题,共有 种不同的商;②是组合问题,共有 种不同的积.

(4)①是排列问题,共有 种不同的选法;②是组合问题,共有 种不同的选法.

例4 证明 .

证明  左式

右式.

∴ 等式成立.

点评 这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质 ,可使变形过程得以简化.

例5 化简 .

解法一 原式

解法二 原式

点评   解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化.

例6 解方程:(1) ;(2) .

解 (1)原方程

解得 .

(2)原方程可变为

∵ , ,

∴ 原方程可化为 .

即 ,解得

第六章  排列组合、二项式定理

一、考纲要求

1.掌握加法原理及乘法原理,并能用这两个原理分析解决一些简单的问题.

2.理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质,并能用它们解决一些简单的问题.

3.掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题.

<think>好的,用户想了解排列组合计算公式和计算方法。首先需要明确排列和组合的基本概念。排列是考虑顺序的,而组合不考虑顺序。排列分为全排列和选排列,组合则是从n个元素中选出k个不考虑顺序的情况。 先从排列开始。全排列的公式应该是n的阶乘,也就是n!。比如排列3个元素的话,就是3×2×1=6种。而选排列的话,比如从n个元素中选k个排列,公式应该是n!/(n−k)!。例如P(5,2)=5×4=20。 然后是组合。组合的公式应该是排列除以k!,即C(n,k)=P(n,k)/k!,也就是n!/(k!(n−k)!)。比如C(5,2)=10。需要注意组合不考虑顺序,所以这里要除以k的阶乘来消除排列带来的重复。 可能还需要提到组合的扩展,比如有重复元素的排列或者组合,但用户的问题可能更关注基本公式。另外,是否要区分排列中的是否允许重复?比如元素是否可以重复选取。不过通常排列组合的基础公式是不重复的情况,所以可能需要说明这一点。 需要检查是否有常见的错误或需要注意的地方,比如阶乘的计算范围,当n和k较大时可能需要计算器或软件。或者是否0的阶乘是1的情况,这在公式中可能会影响结果。 最后,确保公式的格式正确,行内公式用$包裹,独立公式用$$。例如排列公式写成$A_n^k = \frac{n!}{(n-k)!}$,组合公式写成$C(n, k) = \frac{n!}{k!(n-k)!}$。 可能需要举例说明,比如具体的数值计算,帮助用户理解如何应用公式。例如,计算C(5,3)时,代入公式得到10种组合。 检查是否遗漏了排列组合的其他情况,比如环排列或者有重复元素的排列,但用户的问题可能只需要基础内容,所以可以暂不深入,除非搜索结果显示常见问题中包含这些。 最后生成相关问题时,需要考虑用户可能的后续问题,比如区别、实际应用、计算工具等,确保相关问题与原始问题相关且有逻辑联系。</think>排列组合计算公式分为排列数计算和组合数计算两类。排列数记作$A_n^k$或$P(n,k)$,组合数记作$C(n,k)$或$\binom{n}{k}$。 **排列数公式** 当从$n$个不同元素中取出$k$个元素进行有序排列时: $$A_n^k = \frac{n!}{(n-k)!}$$ 例如计算$P(5,2)$时: $5! = 120$,$(5-2)! = 6$,则$P(5,2) = 120/6 = 20$。 **组合数公式** 当从$n$个不同元素中取出$k$个元素不考虑顺序时: $$C(n,k) = \frac{n!}{k!(n-k)!}$$ 例如计算$C(5,3)$时: $5! = 120$,$3! \cdot 2! = 6 \times 2 = 12$,则$C(5,3) = 120/12 = 10$。 **特殊情形处理** - 当$k=0$时,$C(n,0)=1$ - 当$k=n$时,$C(n,n)=1$ - 组合数对称性:$C(n,k)=C(n,n-k)$ ```python # 组合数计算函数示例 from math import factorial def combination(n, k): return factorial(n) // (factorial(k) * factorial(n - k)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值