题意:在一个R*C的矩阵里,留了n个青蛙的脚印。已知每只青蛙的步长是一定的,且都是从一个边界外,跳到了另一边的边界外,而且跳的是直线,每跳一次留下一个脚印。现在求留下最多脚印的那只青蛙留下了多少脚印。也就是求哪条直线上的点最多,注意,如果少于3个点,输出0。
算法:模拟。两点确定一条直线,枚举任意的两个点,计算所确定直线上被青蛙破坏的点。
#include <iostream>
#include <algorithm>
using namespace std;
struct POINT
{
int r;
int c;
};
POINT points[5001];
bool vis[5001][5001]; // 记录稻田是否被破坏
// 按(r,c)降序排序
bool cmp(const POINT &a, const POINT &b)
{
if (a.r < b.r )
{
return true;
}
else if (a.r == b.r)
{
return a.c < b.c;
}
return false;
}
int main()
{
int R,C,num;
cin >> R >> C >> num;
for (int i=0; i<num; i++)
{
cin >> points[i].r >> points[i].c;
vis[points[i].r][points[i].c] = true;
}
/*
为什么要对点按照(行,列)降序排序呢?
先保留疑问,假设对点已经排序过。
对点进行编号:0,1,2,3,4...
我们枚举的顺序是(0,1) (0,2) (0,3) (0,4) (1,2) (1,3) (1,4)...(i,j)...
两点确定一条直线,理论上说,对一条直线,枚举任意的两个点都可以遍历该直线上的点。
但是,算法是要讲究效率的,也就是说,我们希望对一条直线仅枚举一次。
那么,怎么确定当前要枚举的点(i,j)所确定的直线是否已经枚举过呢?
因为我们已经排过序,可以肯定,对某条直线上的所有点,其起始点一定在最前面,因为起始点的行号一定最小。
所以枚举的时候一定会有一种情况 (起始点,下一个点) ,我们要枚举且仅枚举的只有这一个点!!!
因此对于枚举的点(i,j),通过计算如果i的上一个点在稻田外,说明点i是起始点,否则点i不是起始点,也就不需要继续向下执行。
例如:[4,2],[2,6],[3,4]
排序后:[2,6],[3,4],[4,2]
在枚举([3,4],[4,2])的是否,发现点[3,4]的上一个点是[2,6],该点在稻田内,说明点[3,4]不是起始点。
感觉好啰嗦......
*/
sort(points,points+num,cmp);
int ans = 0;
for (int i=0; i<num; i++)
{
for (int j=i+1; j<num; j++)
{
int dx = points[i].r - points[j].r;
int dy = points[i].c - points[j].c;
int tmpx = points[i].r + dx;
int tmpy = points[i].c + dy;
if (tmpx>=1 && tmpx<=R && tmpy>=1 && tmpy<=C)
{
// 此处的[tmpx,tmpy]就是相对点i的上一个点,如果在稻田内,说明i不是起始点,不需要继续向下执行
continue;
}
tmpx = points[j].r - dx;
tmpy = points[j].c - dy;
int cnt = 2;
while(tmpx>=1 && tmpx<=R && tmpy>=1 && tmpy<=C)
{
if (vis[tmpx][tmpy])
{
cnt++;
}
else
{
cnt = 0;
break;
}
tmpx = tmpx - dx;
tmpy = tmpy - dy;
}
if (cnt > ans)
{
ans = cnt;
}
}
}
(ans < 3)? cout << 0 << endl : cout << ans << endl;
}