神经网络算法简单例子,神经网络算法应用实例

本文介绍了神经网络算法的基础知识,包括一个简单的代码示例,机器学习的分类,以及神经网络算法的思路。讨论了BP算法的工作原理,以及反向传播在权重调整中的作用。还提到了卷积神经网络的基本构筑和特点,如稀疏连接和权重共享。
摘要由CSDN通过智能技术生成

求神经网络算法的一个代码示例(C、C++或java一类的)

谷歌人工智能写作项目:小发猫

机器学习的分类

机器学习的分类主要有学习策略、学习方法、数据形式AI爱发猫。学习目标等。

从学习策略方面来看,如果比较严谨的讲,那就是可分为两种:(1)模拟人脑的机器学习符号学习:模拟人脑的宏现心理级学习过程,以认知心理学原理为基础,以符号数据为输入,以符号运算为方法,用推理过程在图或状态空间中搜索,学习的目标为概念或规则等。

符号学习的典型方法有记忆学习、示例学习、演绎学习.类比学习、解释学习等。

神经网络学习(或连接学习):模拟人脑的微观生理级学习过程,以脑和神经科学原理为基础,以人工神经网络为函数结构模型,以数值数据为输人,以数值运算为方法,用迭代过程在系数向量空间中搜索,学习的目标为函数。

典型的连接学习有权值修正学习、拓扑结构学习。(2)直接采用数学方法的机器学习主要有统计机器学习。

统计机器学习是基于对数据的初步认识以及学习目的的分析,选择合适的数学模型,拟定超参数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值