线性代数导论9——线性相关性、基、维数

本文是Gilbert Strang的线性代数导论课程笔记。课程地址: http://v.163.com/special/opencourse/daishu.html  
第九课时:线性相关性、基、维数
学习什么是”线性相关性“,“线性无关”,什么是由向量组所“生成”的空间,什么是向量空间的“基”,什么是子空间的“维数”。

一、知识背景
Ax=b,Am×n,其中m<n,未知数的个数大于方程的个数,由此可推断:Ax=0存在非0解,解存在的原因是矩阵消元后存在自由列。

二、向量组线性相关性
什么条件下,x1,x2...xn是线性无关的?
抽象定义:如果不存在结果为零向量的组合,向量组线性无关,去掉系数全部为零的情况。
假设二维空间中,任意三个不共线的向量必是线性相关的,因为由上面的背景知识可知,这三个向量组成的矩阵A是m<n的。
对于矩阵中个列的线性相关性,如果零空间N(A)里存在非零向量,那么各列相关
假设在一个m维空间里面,矩阵A的列有V1,V2....Vn,如果他们是无关的,那么矩阵A的零空间中只有零向量,那么秩Rank(A)=n,无自由变量;如果这些列向量相关,则表示零空间中存在非零向量,Rank(A)<n,有自由变量。
(注意说线性无关相关都是针对向量组而非矩阵,我们只是把它放在矩阵里并与零空间联系在一起来研究线性相关性)

三、向量组“生成”一个空间
以前见过的:矩阵中列向量的所有线性组合将生成一个“列空间”。。。。
设向量组:v1...vl,生成了一个空间的意思是这个空间包含这些向量的所有线性组合。我们可以简单的说,比如,矩阵的所有列生成列空间。对于一个向量组,他们能够生成一个空间。令S是向量组生成的空间,这表示S包含向量组所有的线性组合,S是包含这些向量的空间中最小的一个。

四、基
从三的概念中可以带出基的概念,它包含向量的个数不多不少, 向量空间的一组基是指:一系列的向量,v1,v2...vd,这些向量具有两大性质:1)他们是线性无关的,可逆;2)他们生成整个空间
比如三维空间中,单位阵是最明显的一个基,除此之外,还有很多其他的基,比如向量[1,1,2],[2,2,5]是生成二维平面的一组基,再加上一个向量[3,4,8]就是三维空间的一组基。
这些基有一个共同的特点,即对于给定N维空间,那么基向量的个数就是N个(即不管是3维空间,列空间,还是零空间,空间中任意基都满足:基向量的个数相等)。

五、维数
维数,即基向量的个数,空间的大小(维数)。
比如上面这个列向量,他们能生成列空间,但这些列向量不是基,但我们可以得到第一列和第二列是列空间的一组基,2是基的维数。
即上面: 矩阵的秩Rank(A)=2为列空间的维数(注意不是矩阵A的维数,是A的列空间的维数,同样,不能说子空间的秩,矩阵才有秩)。
考虑零空间N(A),求解Ax=0,[-1,-1,1,0]就是一个解,令一个特殊解为[-1,0,0,1]。零空间是的维数是多少?
选择自由变量赋予特殊值,得到的向量组合就是0空间,零空间中的向量告诉我们,这样组合列向量会得到零空间,怎样这些列才会线性相关。
零空间的维数是自由变量的数目已知矩阵Am×n,秩为r,那么自由变量为n-r,即dim(N(A))=n-r
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值