自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(40)
  • 收藏
  • 关注

原创 用火车调度模型解读AXI outstanding、Burst与乱序执行

货运火车类比协议规则一辆货运火车(编号D01)一个事务(Transaction),绑定唯一事务ID(如ID=01)火车的车厢数量(如8节车厢)Burst Length,表示事务中的Transfer数量每节车厢的货物容量(如每节装8字节数据)Burst Size(即单次Transfer的数据位宽,如64位宽对应8字节)成都站最多同时发车4列火车(Outstanding=4)主设备的全局Outstanding限制,控制同一主设备所有未完成事务的总数(无论目标地址)

2025-03-28 15:59:27 911

原创 一文读懂AXI outstanding

通过“狗狗捡球”的例子解释AXI协议中的outstanding。

2025-03-28 15:49:34 1188

原创 当AI开始“一本正经地胡说八道”:DeepSeek还是DeepFool?

什么是AI幻觉?如何应对AI幻觉?

2025-03-12 11:21:50 956

原创 MIPI接口:(4)MIPI CSI-2协议详解(下)

MIPI CSI-2协议详解。

2025-03-12 11:14:07 1569

原创 MIPI接口:(4)MIPI CSI-2协议详解(中)

MIPI CSI-2协议详解

2025-03-05 11:08:55 1373

原创 PCIe总线:(2)拓扑结构

介绍PCIe拓扑结构。

2025-03-05 11:05:44 707

原创 MIPI接口:(4)MIPI CSI-2协议详解(上)

MIPI CSI2 协议详解

2025-03-03 17:24:58 2959

原创 PCIe总线:(1)快速入门

PCIe何以取代PCI?深度拆解串行总线的性能碾压与架构革新。

2025-03-03 15:37:46 783

原创 芯片设计工程师如何利用Deepseek提升工作效率

芯片设计工程师利用Deepseek提升工作效率

2025-02-26 11:06:40 699

原创 RDC设计

在多复位域的设计中,异步复位的处理至关重要。本文介绍了两种典型的跨复位域场景,并分析了其可能导致的亚稳态问题。

2025-02-26 09:30:00 831

原创 芯片设计工程师常见面试题目汇总(1)

芯片设计工程师面试常见题目整理

2025-02-25 16:48:46 517

原创 低功耗设计:(5)晶体管级优化

低功耗设计不仅仅停留在时钟门控、面积优化等电路级方法,更可以通过门级优化、多阈值电压设计、EDA工具辅助优化等方式,在晶体管级实现更深层次的功耗优化。

2025-02-25 14:38:02 921

原创 低功耗设计:(4)电路级优化

本文从电路级的角度介绍介绍几种常见的低功耗设计方法,包括门控时钟(Clock Gating)、电路优化减少翻转、面积优化降低功耗、无复位寄存器和保持电路等。

2025-02-24 17:06:40 661

原创 低功耗设计:(3)架构级优化

探讨架构级低功耗设计的核心技术,包括多电压设计(Multi-VDD)、动态电压频率调节(DVFS)、系统时钟优化、异步设计以及算法优化等。

2025-02-23 10:34:35 1121

原创 低功耗设计:(2)系统级优化

系统级优化对功耗的影响最大,可以决定整体架构的功耗控制策略。主要方法包括软硬件协同设计和功耗管理机制

2025-02-21 15:54:55 1008

原创 低功耗设计:(1)功耗的组成

在芯片设计中,功耗(Power Consumption)是影响性能、散热和续航的重要因素。芯片由大量晶体管组成,每个晶体管在工作时都会消耗能量。功耗主要分为动态功耗(Dynamic Power和静态功耗(Static Power)两部分。本文将详细解析它们的来源、计算方式以及优化方向。

2025-02-19 15:19:12 1267

原创 MIPI接口:(3)MIPI PHY

D-PHY 主要由发送器(TX)、接收器(RX)和冲突检测器(CD)

2025-02-13 18:02:22 1242

原创 MIPI接口:(2)常用名词解释

最近在学习MIP接口,整理了一下看协议会遇到的常用名词。便于阅读协议时查阅和理解。

2025-02-13 15:04:43 596

原创 MIPI接口:(1)简介

MIPI D-PHY 让摄像头、屏幕等设备能以高速、低功耗的方式与处理器通信,是移动设备中关键的物理层接口技术。

2025-02-13 11:40:53 1166

原创 AttributeError: module 'tensor board.summary._tf.summary' has no attribute 'FileWriter'

为了实现tensorflow可视化,我使用tf.summary.FileWriter()的时候,会出现错误提示:AttributeError: module 'tensor board.summary._tf.summary' has no attribute 'FileWriter'我发现这个问题网上没有博客提到这个问题,所以就把我的解决过程记录如下。1.将原来使用的t...

2019-11-30 01:53:35 28147 17

原创 (JGSA) Joint Geometrical and Statistical Alignment for Visual Domain Adaptation

2017 CVPR官方代码:https://www.uow.edu.au/~jz960/读完,感觉以下两点思想感觉和2018年的DICD有点相似之处:the variance of target domain is maximized, the discriminative information of source domain is preserved但是DICD考虑的是作域变...

2019-06-12 20:54:19 1591 3

原创 JDA 公式推导

JDA2013 ICCVTransfer feature learning with joint distribution adaptation1.拉格朗日乘数法推导过程如下,设:其中, 2....

2019-06-08 00:41:35 754 4

原创 2014 ARTL Adaptation Regularization: A General Framework for Transfer Learning

龙明盛团队的paper。摘要作者指出之前的迁移学习一般都基于两种策略(并且独立的):1.distribution adaptation;2.label propagation。本文提出了一种迁移学习的框架:通过结构风险最小化和正则化理论,将上面两种策略统一成一个方法。ARTL通过1.优化结构风险函数;2.域的联合分布;3.流形 manifold consistency underl...

2019-06-07 23:20:38 1158

原创 矩阵论(3)——子空间

3 子空间类似集合里面子集的概念,但是更复杂一点。3.1 子空间定义设V是数域F上的线性空间,W是V的子集,若对W中的任意元素,及,按V中的加法和数乘有: ; . 则W也是数域F上的线性空间,称W为V的线性子空间(简称子空间)。 1)由单个零元素组成的子集{}是线性子空间; 2)线性空间V本身也是自己的线性子空间; {}与V是称为V的...

2019-04-24 01:04:51 26478 1

原创 tensorflow框架基础——正则化

1.过拟合如果一个神经网络模型在训练集的准确率很高,而在新的数据集或者测试集准确率较低,说明模型的泛化能力差,也就是过拟合现象。2.正则化正则化就是在损失函数中给每一个参数w(一般不对参数b做正则化)加上权重,从而抑制模型的噪声,减小过拟合。但是这个策略可能会以增大训练误差为代价。3.tensorflow函数正则化:loss(w) = tf.contrib.laye...

2019-04-20 01:40:05 264

原创 矩阵论(2)——线性表示及基与坐标

2 线性表示2.1 线性表示的概念2.1.1线性表示设是线性空间V中的向量,若存在V中一组向量{},及一组数,使得则称向量能被向量组{}线性表示,或者线性表出。2.1.2 线性相关设{}是线性空间V中的一组向量,若存在一组不全为0的数:,使得则称向量组{}线性相关。2.1.3 线性无关设{}是线性空间V中的一组向量,若存在一组不全为0的数:,使得...

2019-04-18 23:27:47 6553

原创 矩阵论(1)——线性空间

1 线性空间1.1数域对加减乘除四则运算封闭的非空数集。例如:实数集R,负数集C。而自然数集不是数域,因为两个自然数相除之后不一定是自然数。1.2 线性空间的定义F是一个数域,V是一个非空集合。两个“封闭性”:V中的任意元素和,有; F中的任意元素k,V中的任意元素,有。加法满足:交换律:; 结合律:; 零元:V中存在一个元素记为,使得对V中任意元素,均有; ...

2019-04-18 21:55:34 1685

原创 Switching Convolutional Neural Network for Crowd Counting(CVPR2017)——论文笔记

Abstract本篇论文主要做了以下三点:端到端的switch-CNN来预测人群密度; Switch-CNN将人群照片的片段送入到独立的CNN回归网络来得到最小的估计错误和提高密度局部利用人群密度的变化率; 我们在三个通用数据集里测试网络的性能。3 Our Approach在这篇论文中,我们提出了一个选择CNN结构的网络,通过网络将一张图片分成各个片段(pat...

2019-04-18 00:51:41 810 1

原创 迁移学习中常用到的matlab函数——持续更新

目录1 repmat()2 sum()3 diag()3.1 X = diag(v,k)3.2 v = diag(X,k)4 ./ .^ .*5 size()6 zscore()A = [1 2; 4 5];B = repmat(A,4,3)OutputB = 1 2 1 2 1 ...

2019-04-17 23:58:22 1015

原创 CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes2018—论文笔记

本论文来自CVPR2018, 读于20190409。Abstract我们提出的Congested Scene Recognition(CSRNet)包含了两个部分,一个是获得二维特征的前端,一个是使用膨胀CNN(dilated CNN)的后端。我们在最常用的那四个数据集((ShanghaiTech dataset, the UCF CC 50 dataset, the WorldEXP...

2019-04-15 15:11:48 1540

原创 Multi-Source Multi-Scale Counting in Extremely Dense Crowd Images(CVPR2013)——论文笔记

这篇论文和之前看过的论文不一样。本文是基于传统的机器学习、统计学和频域分析等方法,而之前看的论文都是基于深度学习且都是卷积神经网络。主要是由于这篇论文是2013年的。1AbstractOur approach relies on multiple sources such as low confidence head detections, repetition of texture e...

2019-04-15 11:26:20 1017

原创 吴恩达深度学习卷积神经网络学习笔记(3)——迁移学习

1 使用开源的实现方案在GitHub资源库,需要感兴趣的网络的代码。下载方式:复制url在终端输入:git clone +url2 迁移学习找开源训练好了的网络。由于深度学习的训练,可能需要十几个GPU和几周的时间。数据集小:1)前面还是使用开源的网络框架和参数,修改最后的softmax层,训练该层的参数;2)删除倒数几层,修改最后的softmax层,训练该层的参数...

2019-04-03 23:37:53 507

原创 吴恩达深度学习卷积神经网络学习笔记(2)——经典神经网络

目录1.经典网络 1.1LeNet-5(1998) 1.2 AlexNet 1.3 VGG-162ResNets(残差网络) 2.1残差块(Residual block) 2.2 残差网络为什么有用? 2.3网络中的网络以及1x1卷积3 谷歌Inception网络1.经典网络 1.1LeNet-5(199...

2019-04-01 20:24:46 1025 2

原创 吴恩达深度学习卷积神经网络学习笔记(1)

1垂直边缘检测器图1.1实现上图的卷积运算:python 中使用函数conv_forward 在tensorflow中使用函数tf.nn.conv2d 在keras框架中使用函数Conv2D其实这个就是数字图像处理里图像分割里面的梯度算子。要得到一幅图像的梯度,要求在图像的每个像素处计算偏导数和。我们处理的是数字量,因此要求关于一点的领域上的偏导数的数字近似。(1.1-1...

2019-03-28 04:13:33 644

原创 深度学习学习笔记——卷积网络

卷积网络(convolutional network)是指神经网络中至少有一层使用了卷积运算来代替一般的矩阵乘法运算的神经网络。1.卷积运算卷积运算通常用星号表示:必须是一个有效的概率密度函数; 函数通常叫做输入; 函数叫作核函数(hernel function); 输出有时候被称为特征映射(feature map)。离散形式的卷积:输入通常是多维数组的数据...

2019-03-21 23:19:52 891

原创 python中的可视化工具——matplotlib模块

matplotlib模块实现函数可视化。1.安装matplotlib模块在终端中的安装指令为:sudo pip install matplotlib2.绘制散点图import matplotlib.pyplot as pltplt.scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=Non...

2019-03-20 00:53:06 439

原创 tensorflow框架基础——滑动平均

1.滑动平均 记录了一段时间神经模型中所有参数的平均值,针对所有参数进行优化:w和b。利用滑动平均可以增强模型的泛化能力,也就是对新鲜样本的适应能力。滑动平均值也叫影子值。2.滑动平均值计算公式 影子值 = 衰减率 * 影子 + (1 - 衰减率)*参数衰减率 = min{MOVING_AVERAGE_DECAY,} 影子初值等于参数初值...

2019-03-19 00:04:20 1110

原创 tensorflow框架基础——指数衰减学习率

学习率表示了每一次更新参数的幅度大小。学习率过小,会导致待优化的参数收敛缓慢;学习率过大会导致待优化的参数在最小值附近波动,不收敛。而指数衰减学习率,是指学习率随着训练轮数变化而动态更新。用tensorflow的函数表示为:learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE,global_step,LEARNIN...

2019-03-18 22:53:52 756

原创 tensorflow框架基础——交叉熵

1.交叉熵(Cross Entropy)表示两个概率分布之间的距离。交叉熵越大,两个概率分布距离越远,两个概率分布越相异。交叉熵越小,两个概率分布越近,两个概率分布越相似。计算公式:用tensorflow函数表示为:ce = -tf.reduce_mean(y_*tf.log(tf.clip_by_value(y,1e-12,1.0)))tf.clip_by_value(y...

2019-03-14 22:51:25 339

原创 深度学习数学基础学习笔记——线性代数(持续更新中)

该笔记只是记录我现在不太熟悉的知识点。1.矩阵相乘 记分别为mxn和nxp的矩阵。 两个矩阵中对应元素的乘积称为元素对应乘积或者Hadamard乘积,记为,而要求和的维数相同。深度学习里面常用到这个运算,之前在论文里面有看到这个符号。 而标准乘积,,得到的是一个mxp的矩阵。2.标量、向量、矩阵和张量 张量就是多位数组,用“阶”表示张量的维度。...

2019-03-14 19:45:14 695

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除