HuggingFace上的模型分类-多模态

无论你是AI爱好者、开发者,还是渴望在人工智能领域有所突破的创业者,了解 Hugging Face 上的强大模型,绝对是你迈向成功的必备技能之一。

  在AI圈,如果你还不知道 Hugging Face,那就像刷短视频不知道抖音的存在一样——Hugging Face连接最新技术与实际应用的桥梁,作为AI开源社区的领导者,Hugging Face 汇集了当前最先进的开源模型,是全球研究者、开发者和企业加速AI开发的关键平台。

  即使是非技术人员,也能通过了解 Hugging Face 的简洁模型分类,掌握最前沿的开源AI工具,帮助你在问题出现时,知道哪类模型能提供帮助。

  下图来自于huggingface网站的截图,分类已经帮大家整理了到文章中:

Hugging Face 上的模型分为几个大的分类:

  • Multimodal(多模态)、
  • Computer Vision(计算机视觉)、
  • Natural Language Processing(自然语言处理)、
  • Audio(音频处理)、
  • Tabular(表格数据处理)
  • 其他(Other)。

  下面将重点讲解 Multimodal(多模态)模型,探索它们如何结合不同类型的数据,创造出跨领域的智能应用。”


  “多模态”是指模型能够同时处理多种类型的数据,比如文本、图像、音频、视频等。简单来说,就是让机器像人类一样理解和融合来自不同感官的信息,极大地拓展了AI应用的边界。属于多模态分类有下面这些种类的模型:

📢1. Audio-Text-to-Text(音频到文本)

  • 介绍:音频到文本模型的核心功能是语音识别(Automatic Speech Recognition, ASR),将音频信号转化为文字。它不仅能“复述”语音内容,还能结合上下文进行语义理解(如口音、背景噪音过滤)。

  • 代表性模型:

    OpenAI/Whisper:支持多语言的高精度语音识别模型,社区应用广泛。

    facebook/wav2vec2:基于自监督学习的语音识别模型,适用于低资源语言场景。

    Qwen/Qwen2-Audio-7B-Instruct,国产的千问大模型,排在流行的第一位。

  • 常见应用:语音助手、会议记录转录、无障碍技术(如实时字幕生成)。


🎨2. Image-Text-to-Text(图像到文本)

  • 介绍:图像到文本模型通过视觉编码器(如SigLIP)和文本解码器的结合,生成与图像内容相关的描述或分析。其能力包括物体识别、场景理解,甚至情感推断(如“图片中的夕阳显得宁静”)。

  • 代表性模型:

  Hugging Face/SmolVLM-256M:轻量级多模态模型,支持移动端部署,仅需1GB显存即可推理。

  Salesforce/BLIP-2:结合视觉与语言预训练,生成高质量图文描述。


👀3. Visual Question Answering(视觉问答)

  • 介绍:该模型需同时理解图像内容和自然语言问题,输出基于视觉推理的答案。例如,输入一张餐桌图片并提问“桌上有多少餐具?”,模型需识别物体并计数。

  • 代表性模型:

  dandelin/vilt-b32-finetuned-vqa:基于ViLT架构,支持复杂视觉推理任务。

  internlm/internlm-xcomposer2:国产,浦语·灵笔,支持多轮对话式视觉问答,适合动态交互场景,下载量遥遥领先。


    🔎4. Document Question Answering(文档问答)

    • 介绍:文档问答模型结合OCR(光学字符识别)与自然语言处理技术,从结构化或非结构化文档(如PDF、扫描件)中提取答案。例如,从合同文件中快速定位条款内容。

    • 代表性模型:

      impira/layoutlmv3:支持表格、图表混合文档的问答,精度较高。

      naver-clova-ix/donut:基于Transformer的端到端文档理解模型,无需OCR预处理。


      📺5. Video-Text-to-Text(视频到文本)

      • 介绍:视频到文本模型需解析时序动态信息,生成视频摘要、动作描述或事件推理(如“两人握手后开始谈判”)。部分模型支持帧级关键内容提取。

      • 代表性模型:

        Hugging Face/SmolVLM-500M:专为企业场景设计,支持短视频字幕生成,推理显存需求仅1.23GB。

        microsoft/viper-7b:结合时空注意力机制,适用于长视频分析。


        📚6. Visual Document Retrieval(视觉文档检索)

        • 介绍:该任务通过图像特征匹配,从海量文档库中检索相关内容。例如,输入产品设计草图,检索出相似的专利文档。

        • 代表性模型:

        facebook/dpr:基于稠密段落检索(DPR),支持图文跨模态检索。

        clip-ViT-B-32:结合CLIP的视觉-文本对齐能力,实现零样本检索。


          🧘🏻‍♀️7. Any-to-Any(多模态全能模型)

          • 介绍:支持任意模态输入与输出的通用模型,例如音频生成图像、视频生成文本等。这类模型依赖统一的嵌入空间和跨模态对齐技术。

          • 代表性模型:

            Hugging Face/IDEFICS:支持图像、文本、视频的混合输入与生成,开源社区评价较高。

            deepseek-ai/Janus-Pro-7B:优秀的国产模型,出自DeepSeek。

            DeepMind/Flamingo:基于少样本学习的多模态模型,擅长复杂推理任务。


              通过了解这些多模态模型,我们可以应对更多复杂的任务,打造出智能、跨界的AI应用。对于初学者来说,了解这些模型的基本功能,并熟悉一些代表性工具,是你在人工智能领域成长的必经之路。

              在下一篇文章中,我们将深入探讨 Computer Vision(计算机视觉) 模型,敬请期待!

            ### 多模态模型概述 多模态模型能够处理多种类型的输入数据,如文本、图像和其他形式的数据。这类模型通常依赖复杂的架构设计来融合不同模式的信息,在实际应用中展现出强大的能力[^1]。 对于Hugging Face平台上提供的多模态模型而言,一个典型的例子就是OpenAI CLIP ViT-Large-Patch14。此模型不仅继承了CLIP框架下对比语言-图像预训练的优点,还采用了ViT(Vision Transformer)作为核心结构组件之一。这种组合使得该模型可以在理解图片的同时关联相应的描述性文字,从而更好地服务于诸如图像分类、文本到图像生成等多种跨领域应用场景[^2]。 ```python from transformers import CLIPProcessor, CLIPModel model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14") processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14") image = ... # PIL image or path to an image file. text = ["a photo of a cat", "a photo of a dog"] inputs = processor(text=text, images=image, return_tensors="pt", padding=True) outputs = model(**inputs) logits_per_image = outputs.logits_per_image # this is the image-text similarity score probs = logits_per_image.softmax(dim=1) # we can take the softmax to get probability distribution over texts ``` 上述代码展示了如何加载并使用`CLIPModel`来进行简单的图文匹配任务。通过指定路径或ID号即可轻松获取所需的大规模预训练权重文件;而`CLIPProcessor`则负责准备合适的输入格式供后续计算过程调用。 值得注意的是,除了像CLIP这样的通用型解决方案外,还有许多专门针对特定场景优化过的多模态模型可供选择。例如,在医疗影像分析方向上就存在不少优秀的开源项目可以借鉴学习[^4]。
            评论
            添加红包

            请填写红包祝福语或标题

            红包个数最小为10个

            红包金额最低5元

            当前余额3.43前往充值 >
            需支付:10.00
            成就一亿技术人!
            领取后你会自动成为博主和红包主的粉丝 规则
            hope_wisdom
            发出的红包
            实付
            使用余额支付
            点击重新获取
            扫码支付
            钱包余额 0

            抵扣说明:

            1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
            2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

            余额充值