Hugging Face
Hugging Face Transformers是一个开源的预训练模型库,旨在将NLP领域的最新进展向更广泛的机器学习社区开放。该库包含了经过精心设计的最先进的Transformer架构,并提供了易于使用的API,使得研究人员和开发者能够轻松地加载、微调和使用这些模型。
Hugging Face Transformers
一、Hugging Face Transformers
Hugging Face Transformers是什么?Hugging Face Transformers是一个强大的Python库,最初被创建用于开发语言模型,如今它的功能已经扩展到包括多模态(如图像和文本结合)、计算机视觉和音频处理等其他用途的模型。这意味着,除了处理语言数据之外,Hugging Face Transformers还能处理图片和声音数据,使其成为一个多功能的工具库。
Hugging Face Transformers
该库提供了各种预训练模型,如BERT、GPT-2、RoBERTa、T5等,并支持Pytorch和Tensorflow2.0框架,其设计目标是提供一个易于使用且灵活的接口,以便研究人员和开发人员能够轻松地使用预训练模型。
-
提供了大量的预训练模型:这些模型已经在庞大的数据集上进行过训练,可以直接使用,帮助用户节省了大量的时间和计算资源,让开发过程更加高效。
-
设计非常注重易用性:详细的文档和简洁的API使得开发者可以快速上手,进行实验和开发。
-
会定期更新:包含最新的研究成果和模型,用户可以及时获取和使用最前沿的技术,保持项目的先进性。
-
拥有一个活跃且热情的社区:社区成员不断更新和维护这个库,提供技术支持和新功能。无论是初学者还是专家,都可以在社区中找到帮助和资源。
二、Hugging Face Hub
Hugging Face Hub是什么?Hugging Face Hub是一个面向机器学习开发者和协作者的社区平台,提供了大量的预训练模型、数据集以及机器学习应用。通过Hugging Face Hub库,用户可以轻松地下载、上传文件,管理存储库,运行推断,搜索资源,以及参与社区互动。
Hugging Face Hub
Hugging Face Hub库的设计考虑到了易用性和功能性,它支持从Hub下载文件、上传文件到Hub、管理存储库、在部署的模型上运行推断、搜索模型和数据集等功能。此外,它还提供了丰富的API和命令行工具,使得用户可以方便地进行身份验证、创建存储库和上传文件。
-
模型开发与测试:开发者可以使用库中的功能下载预训练模型进行本地测试和开发。
-
模型部署:通过上传功能,开发者可以将自己的模型部署到Hugging Face Hub,供全球用户访问。
-
数据集管理:用户可以上传和下载数据集,进行数据准备和预处理。
-
社区协作:通过社区互动功能,用户可以分享自己的模型和数据集,与全球的机器学习社区进行交流和协作。
三、Transformers__核心功能模块
Hugging Face Transformers核心功能模块?Hugging Face Transformers库的核心功能模块包括:Pipelines、Tokenizer、模型加载和保存。
Transformers库提供高层API Pipelines简化模型使用,包含多种Tokenizer实现文本格式转换,以及支持模型加载与保存功能以促进模型复用与共享。
- Pipelines:这是Hugging Face Transformers提供的一个高层API,旨在简化模型的使用过程。通过Pipelines,用户可以轻松地执行各种任务,如文本分类、问答和文本生成等。这个简化的接口使得快速实践大模型变得更加容易,用户只需几行代码就能完成复杂的任务。
Pipelines
-
Tokenizer:Tokenizer是将文本转换为模型可处理的格式的工具。Hugging Face Transformers提供了多种Tokenizer,支持不同的模型和语言。通过Tokenizer,用户可以轻松地对文本进行编码和解码,准备输入数据和处理输出结果,使得数据处理变得更加高效。
-
模型加载和保存:Hugging Face Transformers提供了加载和保存模型的功能,使得模型的使用和管理更加方便。用户可以从Hugging Face Hub加载预训练模型,也可以将自己训练的模型保存并分享给其他用户。这样,模型的复用和共享变得更加简单。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。