质量定义方程常数k = 4π m_p的来源、推导与意义

2025博客之星年度评选已开启 10w+人浏览 1.6k人参与

质量定义方程常数k=4πmpk = 4\pi m_pk=4πmp 的来源、推导与意义

引言

张祥前统一场论是一项极具创新性的物理理论,它试图将引力、电场力、磁场力、强核力统一到一个单一的几何框架中。在这个理论中,常数 k=4πmpk = 4\pi m_pk=4πmp 扮演着核心角色,它是连接时空几何与量子世界的桥梁。本文将以最详细、最核心、最循序渐进的方式,完整讲解这一关系的来源、推导过程及其在整个理论中的根本性意义。

第一章:理论的绝对起点——两个核心公设

任何理论都需要一些最基本的、不证自明的出发点,这叫“公设”。张祥前统一场论建立在两个革命性的公设之上:

公设一:时空同一化

内容:时间不是独立的,它本质上是空间运动的度量。具体来说,一个“空间点”在时间 ttt 内发生的位移 RRR,其大小等于光速 ccc 乘以时间 ttt。写成公式就是:

R=ctR = c tR=ct

理解:这颠覆了牛顿的绝对时空观。在这里,时间 ttt 和空间位移 RRR 通过光速 ccc 被统一了。你感觉到的时间流逝,本质上是空间在以光速运动。

公设二:质量的几何化

内容:一个物体的质量,不是它内部“物质的量”,而是它对其周围“空间运动状态”扰动程度的度量。

更具体地说:想象一个物体(比如一个质点)像太阳一样,它周围的空间在不停地、以光速 ccc、沿着圆柱螺旋状的轨迹向外运动。这种运动可以用无数条“空间位移线”来形象化地描述。

质量的定义:物体质量 mmm 的大小,正比于单位立体角内,这种“空间位移线”的条数密度。

数学公式(微分形式,最根本的定义)

m=k⋅dndΩm = k \cdot \frac{dn}{d\Omega}m=kdΩdn

  • dn/dΩdn/d\Omegadn/dΩ:叫做“空间位移线的条数密度”。dΩd\OmegadΩ 是一个无限小的立体角锥,dndndn 是穿过这个锥子的空间位移线的条数。所以 dn/dΩdn/d\Omegadn/dΩ 表示在物体周围某个特定方向上,空间运动有多“浓密”。这是一个纯粹的、无量纲的几何量。

  • kkk:这是一个比例常数。因为 dn/dΩdn/d\Omegadn/dΩ 是几何量(没有单位),而质量 mmm 是物理量(单位是千克,量纲是[M]),所以必须有一个常数 kkk 来把几何量“转换”成物理量。kkk 的量纲必须是质量 [M]。

小结:理论从“空间光速运动”和“质量是运动密度”这两个想法出发,得到了质量的定义方程 m=k⋅dn/dΩm = k \cdot dn/d\Omegam=kdn/dΩ。这里,kkk 是一个未知的、但量纲为质量的转换常数。

第二章:确定未知常数 kkk ——引入量子力学的“尺子”

只有定义方程 m=k⋅dn/dΩm = k \cdot dn/d\Omegam=kdn/dΩ,我们只知道 kkk 是个有质量单位的常数,但不知道它具体是多少。如何确定它?理论需要一个“锚点”,一把来自现实世界的“尺子”来校准自己。这把尺子就是量子力学中的普朗克质量 mpm_pmp

普朗克质量 mpm_pmp 是什么?

在标准物理学中,普朗克质量 mpm_pmp 是一个由三个最基础的常数——万有引力常数 GGG、光速 ccc 和约化普朗克常数 ℏ\hbar——组合而成的质量尺度:

mp=ℏcGm_p = \sqrt{\frac{\hbar c}{G}}mp=Gc

它被认为是量子效应和引力效应同样重要的尺度,是量子引力理论中的基本质量单位。

赋予 mpm_pmp 一个几何图像(理论的第二个关键步骤)

张祥前理论对普朗克质量 mpm_pmp 给出了一个极其简洁而深刻的几何化解释:

一个具有一个普朗克质量 mpm_pmp 的物体,其对应的空间运动图像是:有且仅有一条(n=1n=1n=1)空间位移矢量,均匀地覆盖整个球面立体角(Ω=4π\Omega = 4\piΩ=4π)。

理解这个图像

  • n=1n=1n=1:表示总共只有“一条”空间位移线。这是最基础、最不可再分的“量子单元”。

  • Ω=4π\Omega=4\piΩ=4π:这条线不是射向一个方向,而是均匀地扩散到整个球面空间(立体角为 4π4\pi4π 球面度)。你可以想象一个无限细的、均匀发光的点光源,它的光均匀照亮整个球壳内壁。

这为“一个普朗克质量”提供了清晰的几何画面:最基本的空间运动单元,覆盖全域。

代入方程,求解 kkk

现在,我们将这个特定的、关于普朗克质量的几何条件(n=1n=1n=1Ω=4π\Omega=4\piΩ=4π),代入普适的质量定义方程 m=k⋅dn/dΩm = k \cdot dn/d\Omegam=kdn/dΩ

注意,对于这种全局、均匀覆盖的情况,微分形式可以退化为最简单的形式:m=k⋅n/Ωm = k \cdot n / \Omegam=kn

代入:

mp=k⋅14πm_p = k \cdot \frac{1}{4\pi}mp=k4π1

这是一个简单的代数方程。我们要求的是常数 kkk

移项,立即得到:

k=4π mpk = 4\pi \ m_pk=4π mp

小结:通过为量子力学中的基本尺度——普朗克质量 mpm_pmp——赋予一个具体的几何图像(一条线覆盖全球面),我们将其作为“校准条件”代入质量定义方程,从而唯一地确定了那个曾经未知的比例常数 kkk。现在,kkk 不再抽象,它的值由 mpm_pmp 决定。

第三章:k=4πmpk = 4\pi m_pk=4πmp 的核心意义——连接几何与量子的桥梁

得到 k=4πmpk = 4\pi m_pk=4πmp 不是终点,而是理论展现其深度和兼容性的起点。

kkk 的角色转变

最初,kkk 只是一个将几何密度(dn/dΩdn/d\Omegadn/dΩ)转换为物理质量(mmm)的比例因子。

现在,k=4πmpk = 4\pi m_pk=4πmp 表明,这个比例因子的大小,是由自然界的一个基本量子尺度——普朗克质量 mpm_pmp——所固定的。

这意味着,该理论的几何体系,其度量标尺本身就是量子化的,根植于量子引力理论的核心。

推导出量子引力的标志性关系(终极验证)

这是最精彩的一步,展示了理论的内洽性和与主流物理思想的兼容。

已知:k=4πmpk = 4\pi m_pk=4πmp(从几何定义得到)

已知:mp=ℏcGm_p = \sqrt{\frac{\hbar c}{G}}mp=Gc(量子力学中普朗克质量的标准定义)

推导

  1. k=4πmpk = 4\pi m_pk=4πmpmp=k/(4π)m_p = k / (4\pi)mp=k/(4π)

  2. 代入普朗克质量定义式:
    k4π=ℏcG\frac{k}{4\pi} = \sqrt{\frac{\hbar c}{G}}4πk=Gc

  3. 两边平方:
    k216π2=ℏcG\frac{k^2}{16\pi^2} = \frac{\hbar c}{G}16π2k2=Gc

  4. 整理,解出 GGG
    G=16π2ℏck2G = \frac{16\pi^2 \hbar c}{k^2}G=k216π2c

  5. 再将 k=4πmpk = 4\pi m_pk=4πmp 代入上式:
    G=16π2ℏc(4πmp)2=16π2ℏc16π2mp2=ℏcmp2G = \frac{16\pi^2 \hbar c}{(4\pi m_p)^2} = \frac{16\pi^2 \hbar c}{16\pi^2 m_p^2} = \frac{\hbar c}{m_p^2}G=(4πmp)216π2c=16π2mp216π2c=mp2c

最终得到

G=ℏcmp2G = \frac{\hbar c}{m_p^2}G=mp2c

这个公式的深远意义

这是量子引力理论中广为人知的标准关系式。它表明,我们宏观测量到的万有引力常数 GGG,并非一个基本常数,而是由更基本的量子常数 ℏ\hbar(量子作用量)、相对论常数 ccc(时空结构)和普朗克质量 mpm_pmp(量子引力尺度)共同衍生出来的“涌现量”。

在张祥前的理论框架内,这个关系是从其几何化公设 m=k⋅dn/dΩm = k \cdot dn/d\Omegam=kdn/dΩ 和赋予普朗克质量的几何图像 k=4πmpk = 4\pi m_pk=4πmp 出发,严格推导出来的。这就在其理论内部,构建了一条通往量子力学核心思想的通道。

第四章:k=4πmpk = 4\pi m_pk=4πmp 的深层物理意义

1. 实现了几何与量子的无缝对接

常数 k=4πmpk = 4\pi m_pk=4πmp 是理论中几何描述与量子描述的“翻译器”。它将纯粹的几何量 dn/dΩdn/d\Omegadn/dΩ 转换为具有物理意义的质量 mmm,同时通过普朗克质量 mpm_pmp 与量子世界的基本常数 ℏ\hbarcccGGG 建立了联系。

2. 揭示了质量的量子本质

质量 m=k⋅dn/dΩm = k \cdot dn/d\Omegam=kdn/dΩ 表明,质量不是连续的,而是量子化的。因为 dndndn 只能取整数(空间位移线的条数),所以质量 mmm 也只能是 kkk 的整数倍(在均匀分布情况下)。

3. 统一场论的核心枢纽

在张祥前的统一场论中,k=4πmpk = 4\pi m_pk=4πmp 是连接不同物理量的核心枢纽:

  • 通过它,质量被几何化
  • 通过它,引力被几何化
  • 通过它,量子效应被纳入几何框架

4. 对现有物理理论的兼容与扩展

推导出的关系 G=ℏc/mp2G = \hbar c / m_p^2G=c/mp2 与量子引力理论的预期完全一致,表明张祥前统一场论与主流物理思想是兼容的,同时提供了一个全新的几何化视角。

第五章:实验验证的可能性

虽然张祥前统一场论目前还没有直接的实验验证,但常数 k=4πmpk = 4\pi m_pk=4πmp 提供了潜在的实验检验途径:

1. 质量的量子化预测

根据理论,质量应该是量子化的,最小的质量单元是 kkk。如果未来的实验能够探测到质量的量子化现象,将为该理论提供有力支持。

2. 空间位移线的探测

如果能够通过某种方式探测到理论中预言的“空间位移线”,将直接验证质量几何化的核心假设。

3. 引力常数的量子修正

根据 G=ℏc/mp2G = \hbar c / m_p^2G=c/mp2,引力常数 GGG 可能会表现出量子修正效应。未来的高精度引力测量实验可能会探测到这种效应。

结论

常数 k=4πmpk = 4\pi m_pk=4πmp 是张祥前统一场论的核心支柱,它实现了几何与量子的无缝对接,揭示了质量的量子本质,同时与主流量子引力理论兼容。通过对这一常数的深入理解,我们可以看到张祥前统一场论在追求物理学大统一方面的独特视角和深刻洞察力。

这一关系的推导过程展示了理论的内在逻辑一致性:从最基本的公设出发,通过几何化的质量定义,引入量子力学的基本尺度,最终推导出量子引力的核心关系。这一过程体现了优秀物理理论的本质特征:简洁、统一、自洽,并与实验观测兼容。

虽然理论仍需实验验证,但常数 k=4πmpk = 4\pi m_pk=4πmp 为我们提供了一个全新的视角,重新审视质量、引力和时空的本质,可能为未来的物理学革命奠定基础。

参考文献

  1. 张祥前. 统一场论.

clc; close all; clear; %% ===================== 参数设置(单位: MHz)===================== gamma = 2*pi * 10; % 衰减率 γ = 2π × 10 MHz gamma31 = gamma; gamma32 = gamma; gamma21 = 0.08 * gamma; % 退相位率 Γ_ij = (γ_i + γ_j)/2 Gamma31 = (gamma31 + gamma32) / 2; Gamma32 = (gamma31 + gamma32) / 2; Gamma21 = (gamma21 + 0) / 2; % γ1=γ31, γ2=γ21+γ23≈0 % 光场参数 Omega_c = 5 * gamma; % 耦合场Rabi频率 Delta_p = 0.0* gamma; % 探测场失谐 Delta_c = 0.0 * gamma; % 耦合场失谐 % 合作参数(根据论文调整) C = 1000* gamma; % 电子合作参数 % 输入光场范围(归一化) y_range = linspace(0, 100, 100); % 输入场 |y| % 原子速度分布参数(多普勒展宽) T = 328; % 温度 (K) - 论文中为328K m = 87 * 1.67e-27; % 铷87原子质量 (kg) kB = 1.38e-23; % 玻尔兹曼常数 lambda = 780e-9; % 波长 (m) - 铷D线 k = 2*pi/lambda; % 波数 v_p = sqrt(2*kB*T/m); % 最概然速度 (m/s) % 速度积分参数 v_max = 3 * v_p; % 积分上限 N_v = 51; % 速度点数 v = linspace(-v_max, v_max, N_v); dv = v(2) - v(1); f_v = exp(-(v/v_p).^2) / (sqrt(pi)*v_p); % 麦克斯韦速度分布 %% ===================== 前向传播计算 ===================== x_forward = zeros(size(y_range)); for i = 1:length(y_range) y = y_range(i); % 迭代求解自洽方程: y = x - iC * ρ31(x) x_guess = y; % 初始猜测 for iter = 1:50 % 迭代次数 rho31_avg = 0; % 对速度分布积分 for idx = 1:N_v v_current = v(idx); % 前向传播多普勒频移 Delta_p_eff = Delta_p + k*v_current; Delta_c_eff = Delta_c - k*v_current; % 计算稳态密度矩阵元 ρ31 rho31 = calculate_rho31(x_guess, Omega_c, Delta_p_eff, Delta_c_eff, ... gamma31, gamma32, gamma21, Gamma31, Gamma32, Gamma21, 0); rho31_avg = rho31_avg + f_v(idx) * rho31 * dv; end % 更新x x_new = y + 1i * C * rho31_avg; % 检查收敛 if abs(x_new - x_guess) < 1e-6 break; end x_guess = x_new; end x_forward(i) = abs(x_guess); end %% ===================== 后向传播计算 ===================== x_backward = zeros(size(y_range)); for i = 1:length(y_range) y = y_range(i); % 迭代求解自洽方程: y = x - iC * ρ31(x) x_guess = y; % 初始猜测 for iter = 1:50 % 迭代次数 rho31_avg = 0; % 对速度分布积分 for idx = 1:N_v v_current = v(idx); % 后向传播多普勒频移 - 注意|2>态额外移动2kv Delta_p_eff = Delta_p - k*v_current; Delta_c_eff = Delta_c + k*v_current; Delta_2_shift = 2*k*v_current; % |2>态能级移动 % 计算稳态密度矩阵元 ρ31 rho31 = calculate_rho31(x_guess, Omega_c, Delta_p_eff, Delta_c_eff, ... gamma31, gamma32, gamma21, Gamma31, Gamma32, Gamma21, Delta_2_shift); rho31_avg = rho31_avg + f_v(idx) * rho31 * dv; end % 更新x x_new = y + 1i * C * rho31_avg; % 检查收敛 if abs(x_new - x_guess) < 1e-6 break; end x_guess = x_new; end x_backward(i) = abs(x_guess); end %% ===================== 绘图 ===================== figure(1); hold on; grid on; plot(x_forward, y_range, 'r-', 'LineWidth', 2, 'DisplayName', 'Forward propagation'); plot(x_backward, y_range, 'b--', 'LineWidth', 2, 'DisplayName', 'Backward propagation'); xlabel('Input field |y|'); ylabel('Output field |x|'); title('Nonreciprocal Optical Bistability with Doppler Effect'); legend('Location', 'best'); set(gca, 'FontSize', 12); %% ===================== 密度矩阵计算函数 ===================== function rho31 = calculate_rho31(Omega_p, Omega_c, Delta_p, Delta_c, ... gamma31, gamma32, gamma21, Gamma31, Gamma32, Gamma21, Delta_2_shift) % 构建密度矩阵方程 A * ρ = B % 增加了Delta_2_shift参数表示|2>态能级移动 % 变量顺序: [ρ11, ρ22, ρ33, Re(ρ12), Im(ρ12), Re(ρ13), Im(ρ13), Re(ρ23), Im(ρ23)] A = zeros(9, 9); B = zeros(9, 1); % 方程 1: dρ11/dt = 0 A(1, :) = [0, 0, gamma31, 0, 0, 0, 2*Omega_p, 0, 0]; % 方程 2: dρ22/dt = 0 A(2, :) = [0, 0, gamma32, 0, 0, 0, 0, 0, 2*Omega_c]; % 方程 3: ρ11+ρ22+ρ33=1 A(3, :) = [1, 1, 1, 0, 0, 0, 0, 0, 0]; B(3) = 1; % 方程 4-5: dρ12/dt = 0 delta12 = Delta_p - Delta_c - Delta_2_shift; % 包含|2>态能级移动 A(4, :) = [0, 0, 0, -Gamma21, delta12, 0, 0, Omega_c, 0]; A(5, :) = [0, 0, 0, -delta12, -Gamma21, -Omega_c, 0, 0, 0]; % 方程 6-7: dρ13/dt = 0 A(6, :) = [0, 0, 0, 0, 0, -Gamma31, Delta_p, 0, Omega_c]; A(7, :) = [Omega_p, 0, -Omega_p, 0, -Omega_c, -Delta_p, -Gamma31, 0, 0]; B(7) = Omega_p; % 方程 8-9: dρ23/dt = 0 A(8, :) = [0, 0, 0, -Omega_c, 0, 0, 0, -Gamma32, Delta_c+Delta_2_shift]; A(9, :) = [0, Omega_c, -Omega_c, 0, 0, -Omega_p, 0, -(Delta_c+Delta_2_shift), -Gamma32]; B(9) = Omega_c; % 求解线性方程组 rho = A \ B; % 提取 ρ31 = Re(ρ13) + i Im(ρ13) rho31 = rho(6) + 1i * rho(7); end
09-05
请讲以下内容写成matlab代码,目的求解传递率频率的关系并绘制图像,完全按照以下内容不要删减:在位移激励下的MSC折纸隔振结构被动隔振时可以抽象为单自由度质量弹簧动力学系统,以隔振结构的静平衡位置为坐标零点,沿系统的轴向建立一维绝对位移坐标系u,以基础静止时的位置为坐标零点,沿系统轴向建立一维绝对坐标系u_B,则隔振结构相对于基础的一维相对位移坐标系为 x=u-u_B 图6. 非线性弹簧等效模型 非线性弹簧等效模型如图所示,对基础施加u_B=Ucos(ωt)的简谐激振位移激励,非线性动力学系统的单自由度有阻尼受迫振动运动方程为: 结构高度h:定义域h∈(0,L),静平衡位置 \(h_0=L/2 \) 压缩变形量x:定义域x∈(-L/2,L/2),满足\(x=h_0-h=L/2-h\)。 旋转角度 θ:由给定几何关系: h(θ)=√(2L^2-(√2 Lsi n⁡(π/4+θ/2) )^2 )=L√2 co s⁡(π/4+θ/2) co s⁡(π/4+θ/2)=1/(2√2)-x/(L√2) ⇒ θ=2[arcco s⁡(1/(2√2)-x/(L√2))-π/4] 当 θ=0时,h(0)=L√2 co s⁡(π/4)=L,对应完全展开 x=-L/2 当 θ=π/2 时,h(π)=0,对应完全折叠 x=L/2 转盘转动动能: T_"rot" =1/2 I(θ^2 ) ̇ 重物平移动能: T_"trans" =1/2 m(u ̇ )^2=1/2 m(x ̇+(u_B ) ̇ )^2 总动能: T=1/2 I(θ^2 ) ̇+1/2 m(x ̇+(u_B ) ̇ )^2 求导,得到角速度 d/dt [π/4+θ/2]=-x ̇/(L√2 sin⁡(π/4+θ/2) ) ⇒ θ ̇=-(2x ̇)/(L√2 sin⁡(π/4+θ/2) ) T=(2I(x^2 ) ̇)/(L^2 sin^2⁡(π/4+θ/2) )+1/2 m(x ̇+(u_B ) ̇ )^2 势能: F_"spring" (x)=k_1 x+k_2 x^2+k_3 x^3+k_4 x^4+k_5 x^5+k_6 x^6+k_7 x^7 V(x)=1/2 k_1 x^2+1/3 k_2 x^3+1/4 k_3 x^4+1/5 k_4 x^5+1/6 k_5 x^6+1/7 k_6 x^7+1/8 k_7 x^8 L = T – V 运动方程为: d/dt (∂L/(∂x ̇ ))-∂L/∂x=Q_x 其中广义力Q_x由基底激励 u_B (t)=U cos⁡(ωt)引起:Q_x=-m(u_B ) ̈ 动量项: ∂L/(∂x ̇ )=(4Ix ̇)/(L^2 sin^2⁡(π/4+θ/2) )+m(x ̇+(u_B ) ̇ ) 时间导数: d/dt (∂L/(∂x ̇ ))=(4Ix ̈)/(L^2 sin^2⁡(π/4+θ/2) )+(2Ix ̇⋅cos⁡(π/4+θ/2)⋅θ ̇)/(L^2 sin^3⁡(π/4+θ/2) )+m(x ̈+(u_B ) ̈ ) 势能梯度项: ∂L/∂x=k_1 x+k_2 x^2+k_3 x^3 展开整理后,加入阻尼项得到非线性动力学方程: (4I/(L^2 sin^2⁡(π/4+θ/2) )+m) x ̈+(4I cos⁡(π/4+θ/2))/(L^3 sin^3⁡(π/4+θ/2) ) (x^2 ) ̇+cx ̇+(k_1 x+k_2 x^2+k_3 x^3+k_4 x^4+k_5 x^5+k_6 x^6+k_7 x^7)=mUω^2 cos⁡(ωt) 假设稳态响应为静态偏移A_0基频简谐运动的叠加: x(t)=A_0+A cos⁡(ωt-α) 其导数为: x ̇(t)=-Aω sin⁡(ωt-α), x ̈(t)=-Aω^2 cos⁡(ωt-α) 将各非线性项展开至常数项和基频项(忽略高次谐波): k_2 x^2≈k_2 (A_0^2+A^2/2)+2k_2 A_0 A cos⁡(ωt-α) k_3 x^3≈k_3 (A_0^3+(3A_0 A^2)/2)+3k_3 (A_0^2+A^2/4)A cos⁡(ωt-α) k_4 x^4≈k_4 (A_0^4+3A_0^2 A^2+(3A^4)/8)+4k_4 (A_0^3+(3A_0 A^2)/4)A cos⁡(ωt-α) k_5 x^5≈k_5 (A_0^5+5A_0^3 A^2+(15A_0 A^4)/8)+5k_5 (A_0^4+(9A_0^2 A^2)/4+(5A^4)/16)A cos⁡(ωt-α) k_6 x^6≈k_6 (A_0^6+15A_0^4 A^2+(45A_0^2 A^4)/8+(15A^6)/32)+6k_6 (A_0^5+(15A_0^3 A^2)/2+(45A_0 A^4)/16)A cos⁡(ωt-α) k_7 x^7≈k_7 (A_0^7+21A_0^5 A^2+(105A_0^3 A^4)/8+(105A_0 A^6)/16)+7k_7 (A_0^6+(105A_0^4 A^2)/4+(105A_0^2 A^4)/16+(35A^6)/64)A cos⁡(ωt-α) (1)常数项平衡方程 所有静态偏移项需满足: (4I cos⁡(π/4+θ/2) A^2 ω^2)/(2L^3 sin^3⁡(π/4+θ/2) )+∑_(n=1)^7▒k_n ⋅C_n=0 展开为: (2I cos⁡(π/4+θ/2) A^2 ω^2)/(L^3 sin^3⁡(π/4+θ/2) )+k_1 A_0+k_2 (A_0^2+A^2/2)+k_3 (A_0^3+(3A_0 A^2)/2)+k_4 (A_0^4+3A_0^2 A^2+(3A^4)/8)+k_5 (A_0^5+5A_0^3 A^2+(15A_0 A^4)/8)+k_6 (A_0^6+15A_0^4 A^2+(45A_0^2 A^4)/8+(15A^6)/32)+k_7 (A_0^7+21A_0^5 A^2+(105A_0^3 A^4)/8+(105A_0 A^6)/16)=0 (2)基频项平衡方程 基频项需满足: [(K_"eq" -M_"eq" ω^2 )^2+(cω)^2 ] A^2=(mUω^2 )^2 {█((K_"eq" -M_"eq" ω^2 )A=mUω^2 cosα@cωA=mUω^2 sinα)┤ 其中K_"eq" =∑_(n=1)^7▒k_n ⋅B_n,M_"eq" =4I/(L^2 sin^2⁡(a) )+m 具体展开为: [-M_"eq" ω^2+k_1+2k_2 A_0+3k_3 (A_0^2+A^2/4)+4k_4 (A_0^3+(3A_0 A^2)/4)+5k_5 (A_0^4+(9A_0^2 A^2)/4+(5A^4)/16)+6k_6 (A_0^5+(15A_0^3 A^2)/2+(45A_0 A^4)/16)+7k_7 (A_0^6+(105A_0^4 A^2)/4+(105A_0^2 A^4)/16+(35A^6)/64)]A=mUω^2 位移传递率 位移传递率T定义为绝对位移振幅基座激励振幅之比: T=|A_0 |/U+√(1+2(A/U)[(K_"eq" -M_"eq" ω^2 )A/(mUω^2 )]+(A/U)^2 )
11-04
import numpy as np from scipy.optimize import root_scalar import pandas as pd # 常数定义 d = 0.55 # 螺距,单位:m v0 = 1.0 # 龙头速度,单位:m/s l0 = 2.86 # 龙头板凳长度,单位:m l_body = 1.65 # 龙身板凳长度,单位:m total_time = 300 # 总时间,单位:s time_points = range(0, total_time + 1) # 时间点,0s到300s num_sections = 222 # 龙身节数 a = d / (2 * np.pi) # 常数a = d/(2π) # 弧长函数:从极角theta到32π的弧长 def arc_length(theta): if theta < 0: theta = 0 term1 = 32 * np.pi * np.sqrt(1 + (32 * np.pi)**2) + np.log(32 * np.pi + np.sqrt(1 + (32 * np.pi)**2)) term2 = theta * np.sqrt(1 + theta**2) + np.log(theta + np.sqrt(1 + theta**2)) return (d / (4 * np.pi)) * (term1 - term2) # 求解龙头极角theta0:对于时间t,求解theta0使得arc_length(theta0)=t def find_theta0(t): def func(theta): return arc_length(theta) - t # 设置搜索区间:theta0从0到32π try: sol = root_scalar(func, bracket=[0, 32*np.pi], method='brentq') return sol.root except: # 如果求解失败,返回近似值 return np.maximum(0, 32*np.pi - t / a) # 近似处理 # 求解下一个极角:已知当前极角theta_i和板凳长度l,求下一个极角theta_{i+1} def find_next_theta(theta_i, l): def func(theta_next): r_i = a * theta_i r_next = a * theta_next left = np.cos(theta_i - theta_next) right = (r_i**2 + r_next**2 - l**2) / (2 * r_i * r_next) return left - right # 设置搜索区间:theta_next从theta_i+1e-5到theta_i+100 try: sol = root_scalar(func, bracket=[theta_i + 1e-5, theta_i + 100], method='brentq') return sol.root except: # 如果求解失败,返回近似值 return theta_i + l / (a * theta_i) # 近似处理 # 求解龙尾后把手极角:已知龙尾前把手极角theta222,求龙尾后把手极角theta_rear def find_rear_theta(theta222): l_rear = l_body def func(theta_rear): r222 = a * theta222 r_rear = a * theta_rear left = np.cos(theta222 - theta_rear) right = (r222**2 + r_rear**2 - l_rear**2) / (2 * r222 * r_rear) return left - right # 设置搜索区间:theta_rear从theta222+1e-5到theta222+100 try: sol = root_scalar(func, bracket=[theta222 + 1e-5, theta222 + 100], method='brentq') return sol.root except: return theta222 + l_rear / (a * theta222) # 近似处理 # 计算速度变化率比值:根据公式(9) def compute_ratio(theta_i, theta_next): delta = theta_i - theta_next numerator = theta_i - theta_next * np.cos(delta) + theta_i * theta_next * np.sin(delta) denominator = theta_next - theta_i * np.cos(delta) - theta_i * theta_next * np.sin(delta) return -numerator / denominator # 计算龙尾后把手速度变化率:使用隐函数求导 def compute_rear_dot_theta(theta222, theta_rear, dot_theta222): k = (l_body / a)**2 delta = theta222 - theta_rear # 计算偏导数 dG_dtheta222 = (theta222**2 - theta_rear**2 + k) / (2 * theta222**2 * theta_rear) dG_dtheta_rear = (theta_rear**2 - theta222**2 + k) / (2 * theta222 * theta_rear**2) dF_dtheta222 = -np.sin(delta) - dG_dtheta222 dF_dtheta_rear = np.sin(delta) - dG_dtheta_rear ratio = dF_dtheta222 / dF_dtheta_rear dot_theta_rear = -ratio * dot_theta222 return dot_theta_rear # 初始化结果存储 results = [] # 循环每个时间点 for t in time_points: print(f"Processing t = {t}s") # 1. 求解龙头极角 theta0 theta0 = find_theta0(t) # 2. 计算所有前把手的极角 thetas = [theta0] for i in range(num_sections): if i == 0: l_use = l0 # 龙头到第一节使用龙头板凳长度 else: l_use = l_body theta_next = find_next_theta(thetas[-1], l_use) thetas.append(theta_next) # 3. 计算龙尾后把手极角 theta_rear = find_rear_theta(thetas[-1]) # 4. 计算速度变化率 dot_theta # 先求 dot_theta0 dot_theta0 = -v0 / (a * np.sqrt(1 + theta0**2)) # 负号表示减小 dot_thetas = [dot_theta0] for i in range(num_sections): ratio = compute_ratio(thetas[i], thetas[i+1]) dot_theta_next = dot_thetas[i] / ratio dot_thetas.append(dot_theta_next) # 5. 计算龙尾后把手速度变化率 dot_theta_rear = compute_rear_dot_theta(thetas[-1], theta_rear, dot_thetas[-1]) # 6. 计算位置和速度 positions = [] velocities = [] for i in range(len(thetas)): theta_i = thetas[i] dot_theta_i = dot_thetas[i] r_i = a * theta_i x_i = r_i * np.cos(theta_i) y_i = r_i * np.sin(theta_i) v_i = np.abs(a * dot_theta_i * np.sqrt(1 + theta_i**2)) positions.append((x_i, y_i)) velocities.append(v_i) # 龙尾后把手 r_rear = a * theta_rear x_rear = r_rear * np.cos(theta_rear) y_rear = r_rear * np.sin(theta_rear) v_rear = np.abs(a * dot_theta_rear * np.sqrt(1 + theta_rear**2)) positions.append((x_rear, y_rear)) velocities.append(v_rear) # 存储结果 results.append({ 'time': t, 'positions': positions, 'velocities': velocities }) # 创建DataFrame用于保存到Excel # 结果包括每个时间点每个把手的位置和速度 # 把手编号:0-222为前把手(0是龙头前把手,1-222是龙身前把手),223是龙尾后把手 data = [] for t, res in zip(time_points, results): row = {'时间/s': t} for i, pos in enumerate(res['positions']): row[f'x{i}/m'] = pos[0] row[f'y{i}/m'] = pos[1] for i, vel in enumerate(res['velocities']): row[f'v{i}/m/s'] = vel data.append(row) df = pd.DataFrame(data) # 保存到Excel文件 df.to_excel('result1.xlsx', index=False, float_format='%.6f')帮我改正这段代码
08-21
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI科技星

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值