hanLP算法之一:TF-IDF算法记录

用来计算一个词在文章中的权重等…
TF:词频,一个词在文章中出现的频率
比如:"软件"在一篇文档中出现3次,这篇文档总共有100个单词,则
词频(TF)为:3/100=0.03

逆文档频率(IDF):该词在该文档集中多少篇文档出现,并取比例对数
比如:"软件"一词在1000份文档中出现,该文档集中有10000000份文档,则**逆向文件频率(IDF)**为lg(10000000/1000)=4

则该词的TF-IDF分数为 0.03*4=0.12
某个词对文章重要性越高,他的TF-IDF值就越大
注意:如果想比较两个词的重要性大小或排序,则计算IDF时必须取相同的底数,否则没有比较意义,比如都以10为底

下面介绍算法原理:
为什么取对数?为什么TF,IDF相乘?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值