luogu P1048

知识点总结:背包问题(0/1 背包)

问题描述:给定一个背包的容量 TM 种物品,每种物品具有体积 x 和价值 y。在不超过背包容量 T 的前提下,选择若干物品,使得总价值最大化。

1. 动态规划状态说明(DP状态说明)

在这个背包问题中,我们使用动态规划来求解。

  • 状态定义:定义 dp[j] 表示背包容量为 j 时能够得到的最大价值。
  • 初始状态dp[0] = 0,表示当背包容量为 0 时,没有物品可以放入,价值为 0。
2. 递推公式

在处理每件物品时,我们有两个选择:

  • 不选这件物品,则当前背包容量 j 的最大价值仍然是 dp[j]
  • 选这件物品,则最大价值变为 dp[j - x] + y(前一个容量为 j - x 的最大价值,加上当前物品的价值)。

因此,递推公式为:
[
dp[j] = \max(dp[j], dp[j - x] + y)
]

逆序遍历:为了确保每个物品在每次选择中只被使用一次,我们在容量从大到小的顺序进行遍历,以免重复计算一个物品的价值。

3. 代码实现

根据上述思路,代码实现如下:

#include <bits/stdc++.h>

using namespace std;

const int N = 1e4;
int dp[N];

int main()
{
   int T, M;
   cin >> T >> M;
   int x, y;

   // 遍历每种物品
   for (int i = 0; i < M; i++)
   {
      cin >> x >> y;
      // 逆序遍历容量,防止重复使用物品
      for (int j = T; j >= x; j--)
      {
         dp[j] = max(dp[j], dp[j - x] + y); // 递推公式:取最大值
      }
   }
   cout << dp[T]; // 输出容量为 T 时的最大价值
   return 0;
}
  • 输入部分:读取背包容量 T 和物品数量 M,以及每件物品的体积 x 和价值 y
  • 动态规划填表:对于每件物品 xy,通过逆序遍历 j 更新 dp[j] 的值,确保背包容量 j 时获得的最大价值。
  • 输出结果dp[T] 即为在给定容量 T 时背包能够达到的最大总价值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值