一个人的旅行

虽然草儿是个路痴(就是在杭电待了一年多,居然还会在校园里迷路的人,汗~),但是草儿仍然很喜欢旅行,因为在旅途中 会遇见很多人(白马王子,^0^),很多事,还能丰富自己的阅历,还可以看美丽的风景……草儿想去很多地方,她想要去东京铁塔看夜景,去威尼斯看电影,去阳明山上看海芋,去纽约纯粹看雪景,去巴黎喝咖啡写信,去北京探望孟姜女……眼看寒假就快到了,这么一大段时间,可不能浪费啊,一定要给自己好好的放个假,可是也不能荒废了训练啊,所以草儿决定在要在最短的时间去一个自己想去的地方!因为草儿的家在一个小镇上,没有火车经过,所以她只能去邻近的城市坐火车(好可怜啊~)。

Input

输入数据有多组,每组的第一行是三个整数T,S和D,表示有T条路,和草儿家相邻的城市的有S个,草儿想去的地方有D个;
接着有T行,每行有三个整数a,b,time,表示a,b城市之间的车程是time小时;(1=<(a,b)<=1000;a,b 之间可能有多条路)
接着的第T+1行有S个数,表示和草儿家相连的城市;
接着的第T+2行有D个数,表示草儿想去地方。

Output

输出草儿能去某个喜欢的城市的最短时间。

Sample Input

6 2 3
1 3 5
1 4 7
2 8 12
3 8 4
4 9 12
9 10 2
1 2
8 9 10

Sample Output

9

最短的的dijkstra版本,但是这道题有技巧就在于他把草儿的家当成了0,然后把这个0点与起点之间建立一条距离为0的边,这样不影响最后结果,而且还可以从0点起用dijkstra就可以了。

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define inf 0x3f3f3f3f
int  t,m,k,n,map[1010][1010], book[1010],dis[1010],s[1010],e[1010];
void cn()
{
    int i,j,minn,h;
    memset(book,0,sizeof(book));
    book[0] = 1;
    for(i = 0; i<=n; i++)
        dis[i] = map[0][i];
    for(i = 1; i<=n; i++)
    {
        minn = inf;
        for(j = 1; j<=n; j++)
        {
            if(dis[j]<minn && !book[j])
            {
                h = j;
                minn = dis[j];
            }
        }
        book[h] = 1;
        for(j = 1; j<=n; j++)
        {
            if(dis[h]+map[h][j]<dis[j] && !book[j])
                dis[j] = dis[h]+map[h][j];
        }
    }
}
int main()
{
    int x,y,z,start,end;
    while(~scanf("%d%d%d",&t,&m,&k))
    {
        n = 0;
        for(int i = 0; i<1010; i++)
        {
            for(int j = 0; j<1010; j++)
                map[i][j] = inf;
            map[i][i] = 0;
        }
        for(int w=0;w<t;w++)
        {
            scanf("%d%d%d",&x,&y,&z);
            n = max(max(n,x),y);
            if(z<map[x][y])
            {
                map[x][y] = z;
                map[y][x] = z;
            }
        }
        int minn = inf;
        for(int i = 0; i<m; i++)
        {
            scanf("%d",&s[i]);
            map[0][s[i]] = map[s[i]][0] = 0;
        }
        for(int i = 0; i<k; i++)
            scanf("%d",&e[i]);
        cn();
        for(int i = 0; i<k; i++)
            minn = min(minn,dis[e[i]]);
        printf("%d\n",minn);
    }
    return 0;
}
 

 

此文档一共两部分,此下载链接为第1部分。 第1章 绪论 1.1 等待的真相 1.2 瓶颈在哪里 1.3 增加带宽 1.4 减少网页中的HTTP请求 1.5 加快服务器脚本计算速度 1.6 使用动态内容缓存 1.7 使用数据缓存 1.8 将动态内容静态化 1.9 更换Web服务器软件 1.1 页面组件分离 1.11 合理部署服务器 1.12 使用负载均衡 1.13 优化数据库 1.14 考虑可扩展性 1.15 减少视觉等待 第2章 数据的网络传输 2.1 分层网络模型 2.2 带宽 2.3 响应时间 2.4 互联互通 第3章 服务器并发处理能力 3.1 吞吐率 3.2 CPU并发计算 3.3 系统调用 3.4 内存分配 3.5 持久连接 3.6 I/O模型 3.7 服务器并发策略 第4章 动态内容缓存 4.1 重复的开销 4.2 缓存与速度 4.3 页面缓存 4.4 局部无缓存 4.5 静态化内容 第5章 动态脚本加速 5.1 opcode缓存 5.2 解释器扩展模块 5.3 脚本跟踪与分析 第6章 浏览器缓存 6.1 别忘了浏览器 6.2 缓存协商 6.3 彻底消灭请求 第7章 Web服务器缓存 7.1 URL映射 7.2 缓存响应内容 7.3 缓存文件描述符 第8章 反向代理缓存 8.1 传统代理 8.2 何为反向 8.3 在反向代理上创建缓存 8.4 小心穿过代理 8.5 流量分配 第9章 Web组件分离 9.1 备受争议的分离 9.2 因材施教 9.3 拥有不同的域名 9.4 浏览器并发数 9.5 发挥各自的潜力 第10章 分布式缓存 10.1 数据库的前端缓存区 10.2 使用memcached 10.3 读操作缓存 10.4 写操作缓存 10.5 监控状态 10.6 缓存扩展 第11章 数据库性能优化 11.1 友好的状态报告 11.2 正确使用索引 11.3 锁定与等待 11.4 事务性表的性能 11.5 使用查询缓存 11.6 临时表 11.7 线程池 11.8 反范式化设计 11.9 放弃关系型数据库 第12章 Web负载均衡 12.1 一些思考 12.2 HTTP重定向 12.3 DNS负载均衡 12.4 反向代理负载均衡 12.5 IP负载均衡 12.6 直接路由 12.7 IP隧道 12.8 考虑可用性 第13章 共享文件系统 13.1 网络共享 13.2 NFS 13.3 局限性 第14章 内容分发和同步 14.1 复制 14.2 SSH 14.3 WebDAV 14.4 rsync 14.5 Hash 14.6 分发还是同步 14.7 反向代理 第15章 分布式文件系统 15.1 文件系统 15.2 存储节点和追踪器 15.3 MogileFS 第16章 数据库扩展 16.1 复制和分离 16.2 垂直分区 16.3 水平分区 第17章 分布式计算 17.1 异步计算 17.2 并行计算 第18章 性能监控 18.1 实时监控 18.2 监控代理 18.3 系统监控 18.4 服务监控 参考文献 索引
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值