平面上有N个圆,他们的圆心都在X轴上,给出所有圆的圆心和半径,求有多少对圆是相离的。
例如:4个圆分别位于1, 2, 3, 4的位置,半径分别为1, 1, 2, 1,那么{1, 2}, {1, 3} {2, 3} {2, 4} {3, 4}这5对都有交点,只有{1, 4}是相离的。
收起
输入
第1行:一个数N,表示圆的数量(1 <= N <= 50000) 第2 - N + 1行:每行2个数P, R中间用空格分隔,P表示圆心的位置,R表示圆的半径(1 <= P, R <= 10^9)
输出
输出共有多少对相离的圆。
输入样例
4 1 1 2 1 3 2 4 1
输出样例
1
这也是一个贪心问题,他给出你圆心的位置还有半径,那么是不是相当于一条线段,因为圆心都是在一条直线上面,相当于直径就是他的线段长度。相离就是不相交,那么也就是时间不冲突,是不是又变成了最少需要多少个教室的问题。那我们上来需要将数据进行处理一下,我们将线段定义成为两个时间一个是开始时间一个结束时间,然后存成2*n个数据范围,碰到起点就加加碰到终点就减减,遍历一遍就得到自己想要的答案了,但是需要进行一下排序,也就是时间起点优先。
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <cmath>
using namespace std;
struct node
{
int t,v;
} a[1000000];
bool cmp(struct node x,struct node y)
{
if(x.v!=y.v)return x.v<y.v;
else return x.t<y.t;
}
int main()
{
int n,p,r;
scanf("%d",&n);
for(int i=0; i<n; i++)
{
scanf("%d%d",&p,&r);
a[i].v=p-r;
a[i+n].v=p+r;
a[i].t=0;
a[i+n].t=1;
}
sort(a,a+2*n,cmp);
int num=n,ans=0;
for(int i=0; i<2*n; i++)
{
if(a[i].t==0)
num--;
else
ans+=num;
}
printf("%d\n",ans);
return 0;
}