1278 相离的圆

平面上有N个圆,他们的圆心都在X轴上,给出所有圆的圆心和半径,求有多少对圆是相离的。

例如:4个圆分别位于1, 2, 3, 4的位置,半径分别为1, 1, 2, 1,那么{1, 2}, {1, 3} {2, 3} {2, 4} {3, 4}这5对都有交点,只有{1, 4}是相离的。

收起

输入

第1行:一个数N,表示圆的数量(1 <= N <= 50000)
第2 - N + 1行:每行2个数P, R中间用空格分隔,P表示圆心的位置,R表示圆的半径(1 <= P, R <= 10^9)

输出

输出共有多少对相离的圆。

输入样例

4
1 1
2 1
3 2
4 1

输出样例

1

这也是一个贪心问题,他给出你圆心的位置还有半径,那么是不是相当于一条线段,因为圆心都是在一条直线上面,相当于直径就是他的线段长度。相离就是不相交,那么也就是时间不冲突,是不是又变成了最少需要多少个教室的问题。那我们上来需要将数据进行处理一下,我们将线段定义成为两个时间一个是开始时间一个结束时间,然后存成2*n个数据范围,碰到起点就加加碰到终点就减减,遍历一遍就得到自己想要的答案了,但是需要进行一下排序,也就是时间起点优先。

 

 

#include <algorithm>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <cmath>
using namespace std;
struct node
{
    int t,v;
} a[1000000];
bool cmp(struct node x,struct node y)
{
    if(x.v!=y.v)return x.v<y.v;
    else return x.t<y.t;
}
int main()
{
    int n,p,r;
    scanf("%d",&n);
    for(int i=0; i<n; i++)
    {
        scanf("%d%d",&p,&r);
        a[i].v=p-r;
        a[i+n].v=p+r;
        a[i].t=0;
        a[i+n].t=1;
    }
    sort(a,a+2*n,cmp);
    int num=n,ans=0;
    for(int i=0; i<2*n; i++)
    {
        if(a[i].t==0)
            num--;
        else 
        ans+=num;
    }
    printf("%d\n",ans);
    return 0;
}
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值