HOOFR: 增强型仿生特征提取器


Extractor)

1. 介绍

提出了一种基于ORB特征FREAK仿生描述子相结合的Hessian ORB - Overlapped FREAK (HOOFR)算法,与SIFT、SURF或ORB相比,HOOFR在不同的匹配上下文中在执行时间和匹配质量方面具有相当高的性能。
BRISK描述符使用对称模式。BRISK的采样点不是简单的随机点,而是位于与关键点同心的圆上。BRISK将采样点对分为两个子集:保留用于计算关键点方向的长距离对和保留用于构建关键点描述符的短距离对FREAK是BRISK的优化版本,主要有两个修改。首先,它使用了一种从人类视网膜中获得的采样模式,在这种模式下,平滑核是重叠的,并且它们的大小呈指数变化。其次,它使用45对对称的中心来估计关键点的方向,而不是像BRISK那样使用长距离对子集。

2. 方法

A. 基于Hessian矩阵的快速检测

ORB算法中,采用FAST-9算法对金字塔各层次的特征进行检测。由于FAST提供了大量的特征,且沿边缘有较大的响应,因此采用Harris矩阵对结果进行滤波。作者使用Hessian矩阵替换Harris矩阵来过滤FAST提供的特征,并使用Hessian矩阵的行列式作为特征点的得分。在这里插入图片描述

Hessian矩阵

Hessian矩阵由图像的二阶偏导数组成,导数可以直接应用到平滑函数,使用高斯函数作为平滑函数,然后可以用来过滤图像,使计算效率更高
在这里插入图片描述

高斯函数

B. FREAK-仿生描述符

FREAK是在考虑人类视网膜拓扑结构和神经科学观察的基础上提出的。人们认为,人类视网膜通过使用不同大小的高斯比较(高斯差分)从视野中提取信息,并将这些差异以二进制模式编码为神经网络。视网膜的拓扑结构和空间编码很有趣。首先,神经节细胞包括几个光感受器。光影响神经节细胞反应的区域是感受野。图2显示神经节细胞的空间分布随到中央凹的距离呈指数减少。
在这里插入图片描述
1)采样模式
它们被分成四个区域:foveal, fovea, parafoveal, and perifoveal,感受野和树突野的大小随到中心凹的径向距离的增加而增大。受此启发,Freak: Fast retina keypoint的作者提出了一种采样模式,如图3a所示。该模式由7个半径呈指数递减的同心圆组成。每一个圆包含6个点,被认为是6个感受野,感受野在中心,整个图案由43个感受野组成。同心圆上的点的分布类似于DAISY中提出的6段法。在这里插入图片描述
作者提出了图3b所示的不同采样模式,仅包含6个同心圆。然而,每一个圆都有
8个感受野
。包括中心点在内,该模式总共包含49个感受野。对于复杂的图像处理任务,各种描述符在图像空间或频域中利用一定程度的重叠,以便能够更有效地掌握复杂的相关性。除了径向重叠外,还增加了环向向重叠量。FREAK使用49个字段之间的比较来构建描述符,因此有更多的对**(1176对)可供选择**,而Freak: Fast retina keypoint903对重叠的增加,助于减少描述符的大小,构建了一个256位的描述符,它是ORB描述符(512位)的一半大小。这种减少不仅是为了节省内存,而且加速匹配过程,其中256位比较比512位比较快两倍。
2)关键点方向
使用FREAK中提出的相同方法,通过对选定对上的局部梯度求和。因为抽样模式有更多的重叠,导致更多的信息被整合到接受领域,所以可以使用比FREAK更少的对进行方向估计。由45对对称接收常变为40对,如图4a所示。通过减少对的数量在计算方向时提高执行时间。然后通过方程3获得方位,其中S是用于计算局部梯度的所有40对的集合,N是S中的对数,pr10是接收场中心坐标的2D矢量。在这里插入图片描述

在这里插入图片描述
3)描述子
二进制描述子F是通过比较接收场与其对应的高斯核来构造的。
在这里插入图片描述
pn是一对感受野,N是二元描述符的大小,I(pr1n)和I(pr2n)分别是该对N的第一和第二感受野的高斯平滑强度。

3. 实验对比

采用8个图像序列如图5所示,对应于视点变化(涂鸦、墙壁)、缩放和旋转(树皮、船)、模糊(自行车、树木)、亮度变化(汽车)和JPEG压缩(Ubc)来评估性能。在这里插入图片描述

图5 用于评估的图像序列

采用SIFT、SURF、ORB、BRISK和FREAK等广泛使用的算法进行比较。所有的匹配测试都采用了brute-force算法,其中SIFT使用浮动距离,SURF使用浮动距离,二进制描述符使用Hamming距离。为了公平起见,对检测器返回的相关关键点数目设置相同的值。此值在此测试中设置为1000个关键点

A. HOOFR检测器重复性
特征检测器的理想特性是重复性。它表示检测器在同一场景的两个或多个不同图像中找到相同特征的能力。图6显示了具有独立特性的五个变换的重复性评估。HOOFR表现出了显著的性能,在大多数图像序列上都优于ORB。在这里插入图片描述

图6 在图像数据集中评估探测器的重复性

B.HOOFR二进制描述符比较
将HOOFR描述符与文献中的其他二进制描述符如BRISK、ORB和FREAK进行了比较,使用FREAK和BRISK中提出的召回精度曲线来判断性能。在这个测试中选择ORB检测器,返回的相关关键点的数目也是1000个。图7显示了使用基于阈值的汉明距离相似性匹配从数据集中收集图像对的召回精度曲线。根据图7,HOOFR通常比FREAK更具有鲁棒性。另一方面,它克服了ORB的所有测试图像转换问题。尽管在某些情况下会出现波动,但HOOFR的性能要好于BRISK。
在这里插入图片描述

图7 二值描述符评价的召回精度曲线

C. 速度
表1给出了4个选定序列中的第一图像的检测结果,表2给出了相同图像的描述时间。表3显示了检测器和描述符的提取时间。它的计算速度甚至比ORB更快,在描述方面,体现二进制描述符的优势,比SURF快一个数量级,比SIFT快两个数量级
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
总结:HOOFR通常具有比SIFT和ORB更好的总体性能

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值