深度理解_微积分_偏导和空间向量

空间曲线,空间曲面

空间曲线的两种方式:①参数式②两面相交式

空间曲线一点的切线:①参数式:对x,y,z求t的偏导,\frac{x-x_{0}}{x{}'(t)}=\frac{y-y_{0}}{y{}'(t)}=\frac{z-z_{0}}{z{}'(t)}②两面相交式:两个方程对x求导,解出两个偏导,切线:\frac{x-x_{0}}{1}=\frac{y-y_{0}}{F_{y}(M_{0})}=\frac{z-z_{0}}{F_{z}(M_{0})}

空间曲面的表现方式:F(x,y,z)=0

二次曲面的一点的切线:ax^2+by^2+cz^2=0          axx_{0}+byy_{0}+czz_{0}=0

空间曲面的切平面方程F_{x}(M_{0})(x-x_{0})+F_{y}(M_{0})(y-y_{0})+F_{z}(M_{0})(z-z_{0})=0

 

相关推荐
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页