深度理解_微积分下

用法查询_微积分下_目录https://blog.csdn.net/aiqq136/article/details/114967813

 

第五章多元函数微分学

§5.1多元函数

一、邻域

领域:空间一点的周围很小的部分

空心领域:空间一点的周围很小的部分,不含这点

D:一片指定的区域

内点:一点存在领域在D内

边界点:一点所有领域都存在属于D和不属于D,点可在D上D内D外

边界:D的边界点集合

外点:存在领域不在D内

聚点:所有领域都要有D内非P的点

二、开集与闭集

开集:D中每个点都是内点

三、区域

开区域:无边

闭区域:有边

四、多元函数的概念

n元函数:R^n的一个子集

五、等值线

等值线:相当于地图等高线

六、多元函数的极限

heinz归结原则:当P以任何方式趋于Po时,极限相同

区域:无孤立点

区域:相当于一元函数的定义域和值域等

一元函数:一条曲线到一个数集上的映射

多元函数:平面、空间至更高维度区域到一个数集上的映射

初等函数:基本初等函数通过有限次四则运算、复合组成的可用解析式写出的函数

两种方法判断不存在

①以一种解析式接近时极限不存在,y=kx,y=x,y=\frac{1}{2}xy=kx^2x=ky^2(目的是让x或者y的次数相同,从而消去x或者y)

②以两种不同的解析式接近时极限不同

四种方法求出极限

①极限定义

②无穷小与有限函数的乘积为0

③多元函数换元成一元函数

④夹逼准则

其它方法求极限

  • 多元函数化成一元函数:同乘同除一个变量,用等价无穷小消去另一个变量
  • 多元初等函数直接代入极限
  • 两种重要极限:化为e

七、多元函数的连续性

连续:D内聚点,极限=值,同求极限的方法

不连续:极限不存在或无定义

连续定理:所有初等多元函数在定义域内都是连续的

间断点:不在定义域内的一切点

有界闭区域多元性质:最大最小值定理:在定义域内最大最小值至少出现一次

有界闭区域多元性质:介值定理:在不同两点间,一定存在一点值在这两个值之间

思考题5.1

1、了解二元函数的极限连续的概念,并能判断二元函数在某一点是否连续

极限:不同方式接近

连续:极限=值

极限存在就连续

2、掌握二元函数的偏导数以及全微分的知识对于任意函数可以求出需要的偏导数或者全微分

偏导数:其它当成常数,对分母的字母求导

全微分:等于偏导乘微分

3、掌握复合函数的一阶偏导数、二阶偏导数、混合偏导数

一阶:直接求导

二阶:链式法则

混合:链式法则

4、理解隐函数存在定理,会求隐函数的一阶偏导数

隐函数存在定理:

隐函数的一阶偏导数:

5、理解切线,法线,切平面的概念,并会求出曲线的切线和法平面、曲面的切平面和法线方程

曲线的切线:代数式:三偏导+一点,两面式:FG各偏x导,解方程,1

曲线的法平面:切线分母变系数

曲面的切平面:三偏导

曲面的法线方程:偏导系数变分母

6、熟练掌握方向导数与梯度的概念和计算

方向导数:定义,公式:偏导点乘方向余弦

梯度:公式:偏导点乘ijk

7、理解二元函数的极值和条件极值的定义,会判断极值以及熟练掌握拉格朗日乘数法的使用方法此外,此专题的知识点和概念有点类似上册一些概念的相互关系比较复杂,此书有一定的技巧总结或者方法归纳,希望读者能仔细品味专题例题以达到辨析混淆的概念和解题举一反三的目的.
 

 

 

 

 

 

习题5.1

求极限:四种方法求出极限

证明极限不存在:两种方法判断不存在

讨论多元函数的连续性:极限存在则连续,不存在不连续

§5.2偏导数

一、偏导数的概念

偏导数:对x偏导,就将其它字母看成常数,然后求导(注意:如果指数和底数同时存在自变量,要把指数函数两边求In再两边求导)

混合二阶偏导数:注意分母的顺序,虽然顺序不影响偏导结果

一元函数微分,可微:y=f(x)          \Delta y=A\Delta x+o(\Delta x)           dy=A\Delta x=f{}'(x)dx

多元函数微分,可微:z=f(x,y)  \Delta z=A\Delta x+B\Delta y+o(\rho )    \rho =\sqrt{\Delta x^2+\Delta y^2}    dz=\frac{\delta z}{\delta x}dx+\frac{\delta z}{\delta y}dy

判断在一点(a,b)可微的步骤:1.求出在这点的偏导数   2.令   \rho =\sqrt{x^2+ y^2}    \Delta z=f(x,y)-f(a,b)  3.求极限lim\varrho ->0\frac{\Delta z-xianxingzhubu}{\varrho }=0则可微

偏增量:一个自变量不变,另一个变

偏导数:定义\Delta x->0的极限下,x的偏增量除以\Delta x;只有分段函数在分段点的偏导用定义,不然就用求导代值的方法

用定义求一点偏导f_{x}(0,0)=lim\frac{f(\Delta x,0)-f(0,0)}{\Delta x},两点直接代值

z=f(x,y)+f(x+y)求z对x,z对y的偏导:相当于一元函数求导,

f(x,y)对x求偏导,f加撇,乘y,对y求偏导,f加撇,乘x;

f(x+y)对x求偏导,对y求偏导,f加撇

f(x,g(y))对x求偏导,f加撇,对y求偏导,f加撇,乘g{}'(y)

全偏量:两个自变量同时发生改变

全微分:dz=\frac{\delta z}{\delta x}dx+\frac{\delta z}{\delta y}dy

二、函数的偏导数与函数连续性的关系

可微则可导,连续

一元函数:可微=可导

多元函数:可微-》可导

在一点存在连续的偏导数则可微

偏导在一点的极限不存在,则不连续,则不可微

多元初等函数在定义域内可微

一元函数:可导一定连续,连续不一定可导

多元函数:可导不一定连续,连续不一定可导

三、偏导数的几何意义

f(x,y)是空间中的不规则曲面,上面存在一点P(x_{0},y_{0}),关于P点对x的偏导数的几何意义为

平行于xoz平面的平面与f(x,y)交一条曲线

P点对x的偏导数就是这条曲线上P点的切线

 

证明连续:极限的△X△Y趋近0,全增量=0,当y以一种解析式趋近(0,0),极限全增量,代换,判断存在不存在
cos1/x和sin1/x不存在
证明偏导存在:偏增量/△X极限存在
偏导存在且有界,则连续

四、高阶偏导数

思考题5.2

习题5.2

§5.3全微分及其应用

一、全微分的概念

二、可微的性质

三、可微的充分条件

四、全微分在近似计算中的应用

思考题5.3

习题5.3

§5.4多元复合函数的求导法则

一、复合函数求导的链式法则

多元复合显示函数:只有自变量,不含中间变量,直接求导
多元复合抽象函数:z=f(u,v),有多少个中间变量,有几项只和
求导的链式法则:对的偏导=两项相加
半导数:只有一个中间变量
全导数:只有一个自变量
特殊情况:z=f(u,v,y)  u=u(x,y)  v=v(x,y)
fx=两项和
fy=三项和(第三项∂f/∂y)

特殊情况:u=f(x,y,z)    z=g(y,t)    t=h(x,y)    u和z的偏导都要求,将z的偏导代入可得答案

特殊情况:z=y/f(g(x,y)) 偏导=商的求导
极坐标P29
 

二、一阶全微分形式的不变性

一元全微分形式不变性
全微分运算公式①+②×③÷
复合函数的高阶偏导数:两次链式法则,第二次非x的系数不变,若系数含x则为乘法求导法则,f变为\frac{\vartheta f}{\vartheta x}再链式

三、复合函数的高阶偏导数

 

思考题5.4

习题5.4

§5.5隐函数求导法

一、一个方程的情形

方程的个数,未知数的个数,自变量数,因变量数

方程的个数=因变量数

未知数的个数,自变量数,因变量数

一元隐函数求导方法:左右同时求导,再将带导数的合并同类项,放到等号的一边

多元隐函数求导方法:左右同时求导,再将带导数的合并同类项,放到等号的一边

F(x,y)隐函数存在定理:存在P(x_{0},y_{0})领域有连续偏导数,F(x_{0},y_{0})=0,F_{y}(x_{0},y_{0})\neq 0

F(x,y)隐函数求导方法:\frac{dy}{dx}=-\frac{F_{x}}{F_{y}}  (就是分子分母下标交换)

F(x,y,z)隐函数存在定理:存在P(x_{0},y_{0},z_{0})领域有连续偏导数,F(x_{0},y_{0},z_{0})=0,F_{y}(x_{0},y_{0},z_{0})\neq 0

F(x,y,z)隐函数求导方法:\frac{\vartheta z}{\vartheta x}=-\frac{F_{x}}{F_{z}}    \frac{\vartheta z}{\vartheta y}=-\frac{F_{y}}{F_{z}}(就是分子分母下标交换)

F_{x},F_{y},F_{z}求导:除了下标字母,其它都是常数,(可用f_{1},f_{2}简化运算)

二、方程组的情形

方程组隐函数求导存在定理:存在P(x_{0},y_{0},u_{0},v_{0})领域有连续偏导数,F(x_{0},y_{0},u_{0},v_{0})=0,G(x_{0},y_{0},u_{0},v_{0})=0,雅可比式不等于0

雅可比式:J=\frac{\vartheta (F,G)}{\vartheta (u,v)}=\begin{vmatrix} F_{u} & F_{v} \\ G_{u} & G_{v} \end{vmatrix}

方程组隐函数求导:

特殊方程组隐函数求导:只有三个未知数,一个自变量时,按一元函数的方法求,然后通过线性方程组求解

思考题5.5

习题5.5

§5.6偏导数在几何上的应用

一、空间曲线的切线和法平面

参数式

空间曲线:x=x(t) y=y(t)  z=z(t)

光滑曲线:可导且导数不全为零

切线方程:\frac{x-x_{0}}{x{}'(t)}=\frac{y-y_{0}}{y{}'(t)}=\frac{z-z_{0}}{z{}'(t)}

切向量:n=(x{}'(t),y{}'(t),z{}'(t))

法平面:x{}'(t)(x-x_{0})+y{}'(t)(y-y_{0})+z{}'(t)(z-z_{0})=0

相交式

两个方程对x求导

解出x的两个偏导

切向量=(1,F_{y}(M_{0})F_{z}(M_{0})

切线:\frac{x-x_{0}}{1}=\frac{y-y_{0}}{F_{y}(M_{0})}=\frac{z-z_{0}}{F_{z}(M_{0})}

法平面:(x-x_{0})+F_{y}(M_{0})(y-y_{0})+F_{z}(M_{0})(z-z_{0})=0

二、空间曲面的切平面和法线

空间曲面:F(x,y,z)=0

切平面法向量n=(F_{x}(M_{0}),F_{y}(M_{0}),F_{z}(M_{0}))

切平面方程:F_{x}(M_{0})(x-x_{0})+F_{y}(M_{0})(y-y_{0})+F_{z}(M_{0})(z-z_{0})=0

法线:\frac{x-x_{0}}{F_{x}(M_{0})}=\frac{y-y_{0}}{F_{y}(M_{0})}=\frac{z-z_{0}}{F_{z}(M_{0})}

思考题5.6

习题5.6

§5.7方向导数与梯度

一、方向导数

二、梯度

思考题5.7

习题5.7

§5.8二元函数的泰勒公式

习题5.8

§5.9多元函数的极值与最大(小)值

一、无条件极值

二、有界闭区域上的最大值与最小值

三、条件极值拉格朗日乘数法

思考题5.9

习题5.9

§5.10应用实例

实例一拐角问题模型

实例二最优价格模型

复习题五

第六章多元数量值函数积分学

6.1多元数量值函数积分的概念与性质

一、引例非均匀物体的质量问题

二、多元数量值函数积分的概念

三、多元数量值函数积分的性质

思考题6.1

习题6.1

§6.2二重积分的计算

一、二重积分的几何意义

二、在直角坐标系下计算二重积分

三、在极坐标系下计算二重积分

四、二重积分的换元法

五、无界区域上的反常二重积分

思考题6.2

习题6.2

§6.3三重积分的计算

一、在直角坐标系下计算三重积分

二、在柱面坐标系下计算三重积

三、在球面坐标系下计算三重积分

四、三重积分的换元法

思考题6.3

习题6.3

§6.4第一类曲线积分的计算

一、曲线的弧长

二、第一类曲线积分的计算

思考题6.4

习题6.4

§6.5第一类曲面积分的计算

一、曲面的面积

二、第一类曲面积分的计算

思考题6.5

习题6.5

§6.6积分在物理上的应用

一、质心

二、转动惯量

三、引力

思考题6.6

习题6.6

§6.7含参变量的积分

一、有限区间上含参变量的积分

二、含参变量反常积分

习题6.7

§6.8应用实例

实例通信卫星的电波覆盖地球表面的面积

复习题六

第七章多元向量值函数积分学

§7.1第二类曲线积分

一、有向曲线

二、引例

三、第二类曲线积分的概念与性质

四、第二类曲线积分的计算

五、第二类曲线积分的应用

思考题7.1

习题7.1

§7.2第二类曲面积分

一、有向曲面(曲面的侧)

二、引例

三、第二类曲面积分的概念与性质

四、第二类曲面积分的计算

五、第二类曲面积分的应用

习题7.2

7.2

§7.3微积分基本定理的推广

一、格林公式

二、高斯公式

三、斯托克斯公式

思考题7.3

习题7.3

§7.4曲线积分与路径的无关性

一、曲线积分与路径无关的条件

二、全微分方程

思考题7.4

习题7.4

§7.5场论初步

一、场的概念

二、通量与散度

三、环量与旋度

四、几种特殊的向量场

思考题7.5

习题7.5

复习题七

第八章无穷级数

§8.1常数项级数的概念与性质

一、常数项级数的概念

二、常数项级数的性质

三、级数收敛的必要条件

思考题8.1

习题8.1

§8.2常数项级数的判别法

一、正项级数的判敛法

二、交错级数的判敛法

三、绝对收敛与条件收敛

思考题8.2

习题8.2

§8.3幂级数

一、函数项级数的一般概念

二、幂级数及其收敛半径

三、幂级数的运算性质

思考题8.3

习题8.3

§8.4函数展开成幂级数

一、泰勒级数

二、函数展开成幂级数

思考题8.4

习题8.4

§8.5幂级数的应用

一、用幂级数表示函数

二、欧拉公式

三、微分方程的幂级数解

习题8.5

§8.6傅里叶级数

一、三角级数

二、三角函数系的正交性

三、欧拉-傅里叶系数公式

四、傅里叶级数的收敛问题

思考题8.6

习题8.6

§8.7正弦级数与余弦级数

一、奇偶函数的傅里叶级数

二、函数展开成正弦级数与余弦级数

思考题8.7

习题8.7

§8.8任意周期函数的傅里叶级数

一、周期为2l的周期函数的傅里叶级数

二、傅里叶级数的复数形式

三、傅里叶积分

习题8.8

§8.9应用实例

实例银行存款问题

复习题八

部分习题参考答案

参考书目

  • 1
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值