堆元素插入
二叉堆一般用数组来表示。例如,根节点在数组中的位置是0,第n个位置的子节点分别在2n+1和 2n+2。 因此,第0个位置的子节点在1和2,1的子节点在3和4。以此类推。这种存储方式便于寻找父节点和子节点。在二叉堆上可以进行插入节点、删除节点、取出值最小的节点、减小节点的值等基本操作。
“最小堆”的定义如下:
typedef struct _otherInfo
{
int i;
int j;
}OtherInfo;
typedef struct _minHeapNode
{
int value;
OtherInfo otherInfo;
}MinHeapNode, *PMinHeapNode;
typedef struct _minPQ {
PMinHeapNode heap_array; // 指向堆元素数组
int heap_size; // 当前堆中的元素个数
int capacity; //堆数组的大小
}MinHeap, *PMinHeap;
请实现最小堆的元素插入函数:
bool heap_insert_value(PMinHeap pq, int value);
其中 pq指向堆,value 为要插入的堆元素。
(注:假设辅助函数 parent 和 swap_node 已正确实现,heap_insert_value 函数可直接使用。)
提供代码
#include <stdio.h>
#include <stdlib.h>
#include "minbinheap.h"
bool heap_insert_value(PMinHeap pq, int value){
}
实例解读
swap_node 会打乱6的位置,所以不推荐使用
参考答案
#include <stdio.h>
#include <stdlib.h>
#include "minbinheap.h"
//parent 和 swap_node 已正确实现,pq指向堆,value 为要插入的堆元素
bool heap_insert_value(PMinHeap pq, int value){
//如果满了,就无法插入
if (pq->heap_size == pq->capacity)return false;
int i = pq->heap_size;
int j;
int temp;
//p指向根节点
MinHeapNode* p = pq->heap_array;
//插入最后一位
p[i].value = value;
pq->heap_size++;
while (1) {
j = parent(i);
//j不是节点的父亲
if (p[i].value <= p[j].value) {
temp = p[i].value;
p[i].value = p[j].value;
p[j].value = temp;
i = j;
if (i == 0)return true;
}
else return true;
}
}
#include<stdio.h>
#include<stdlib.h>
#include<stdbool.h>
//子节点
typedef struct _otherInfo
{
int i;
int j;
}OtherInfo;
//堆元素
typedef struct _minHeepNode
{
int value;
OtherInfo otherInfo;
}MinHeapNode,*PMinHeapNode;
//最小堆
typedef struct _minPQ
{
PMinHeapNode heap_array;//指向堆元素的数组
int heap_size; //堆元素的个数
int capacity; //堆元素的容量
}MinHeap,*PMinHeap;
//pq指向堆,capacity为堆元素数组的初始化大小
void init_min_heap(PMinHeap pq, int capacity){
pq->capacity = capacity;
pq->heap_size = 0;
pq->heap_array = (PMinHeapNode)malloc(sizeof(MinHeapNode) * pq->capacity);
return;
}
//返回堆元素的父节点下标
//n->2n+1 2n+2
int parent(int i) {
return (i - 1) / 2;
}
//返回左子节点
int left(int i) {
return 2 * i + 1;
}
int right(int j) {
return 2 * j + 2;
}
//交换两个堆元素的值
void swap_node(MinHeapNode* x, MinHeapNode* y) {
int value;
int i, j;
value = y->value;
i = y->otherInfo.i;
j = y->otherInfo.j;
y->value = x->value;
y->otherInfo.i = x->otherInfo.i;
y->otherInfo.j = x->otherInfo.j;
x->value = value;
x->otherInfo.i = i;
x->otherInfo.j = j;
}
//parent 和 swap_node 已正确实现,pq指向堆,value 为要插入的堆元素
bool heap_insert_value(PMinHeap pq, int value){
//如果满了,就无法插入
if (pq->heap_size == pq->capacity)return false;
int i = pq->heap_size;
int j;
int temp;
//p指向根节点
MinHeapNode* p = pq->heap_array;
//插入最后一位
p[i].value = value;
pq->heap_size++;
while (1) {
j = parent(i);
//j不是节点的父亲
if (p[i].value <= p[j].value) {
temp = p[i].value;
p[i].value = p[j].value;
p[j].value = temp;
i = j;
if (i == 0)return true;
}
else return true;
}
}
int main()
{
//创建堆
return 0;
}