洛谷 [P4151] 最大异或和路径

线性基

首先我们发现,对于一条路径走过去再走回来是没有意义的,
所以我们可以没有任何其他影响的取得一个环的异或和
所以我们预处理出来所有环的异或和,求出他们的线性基,然后任找一条 \(1 \sim n\) 的路径,找出异或和的最大值

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#define ll long long
#define MB 62
using namespace std;
const int MAXN = 400005;
struct edge{
    int to, nxt;
    ll dis;
}e[MAXN<<1];
int head[MAXN], nume, n, m, tot;
ll a[MAXN], lb[MAXN], d[MAXN];
bool f[MAXN];
void adde(int from, int to, ll dis) {
    e[++nume].to = to;
    e[nume].dis = dis;
    e[nume].nxt = head[from];
    head[from] = nume;
}
ll init() {
    ll rv = 0, fh = 1;
    char c = getchar();
    while(c < '0' || c > '9') {
        if(c == '-') fh = -1;
        c = getchar();
    }
    while(c >= '0' && c <= '9') {
        rv = (rv<<1) + (rv<<3) + c - '0';
        c = getchar();
    }
    return fh * rv;
}
void dfs(int u, int fa) {
    f[u] = 1;
    for(int i = head[u]; i; i = e[i].nxt) {
        int v = e[i].to;
        if(v != fa &&!f[v]) {
            d[v] = d[u] ^ e[i].dis;
            dfs(v, u);
        }else if(v != fa) {
            a[++tot] = d[u] ^ d[v] ^ e[i].dis;
        }
    }
}
void prepare(){
    for(int i = 1; i <= tot; i++) {
        for(int j = MB; j >= 0; j--) {
            if(a[i] & (1ll << j)) {
                if(!lb[j]){
                    lb[j] = a[i];
                    for(int k = j - 1; k >= 0; k--) if(lb[k] && (lb[j] & (1ll << k))) lb[j] ^= lb[k];
                    for(int k = j + 1; k <= MB; k++) if(lb[k] & (1ll << j)) lb[k] ^= lb[j];
                    break;
                }else a[i] ^= lb[j];
            }
        }
    }
}
int main() {
    n = init(); m = init();
    for(int i = 1; i <= m; i++) {
        int u = init(), v = init();
        ll dis = init();
        adde(u, v, dis); adde(v, u, dis);
    }
    dfs(1, 0);
    prepare();
    ll ans = d[n];
    for(int i = MB; i >= 0; i--) {
        if((ans ^ lb[i]) > ans) ans ^= lb[i];
    }
    cout<<ans<<endl;
    return 0;
}

转载于:https://www.cnblogs.com/Mr-WolframsMgcBox/p/8571487.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值