【Math for ML】线性代数-单射,满射,双射,同构,同态,仿射

本文介绍了线性代数中的映射类型,包括单射、满射和双射,并详细阐述了同态、同构的概念。还探讨了线性映射的矩阵表示、基变换以及核与象的概念。此外,文章还讲解了仿射空间和仿射映射的基本原理。
摘要由CSDN通过智能技术生成

I. 映射(Mapping)

1. 单射(Injective)

函数f 是单射当且仅当若f(x) = f(y) 则 x = y。

例子: f(x) = x+5 从实数集\(R\)\(R\)是个单射函数。

这个函数很容易被还原:f(3) = 8,即 已知 8 可以返回 3

2. 满射(Surjective)

函数 f(从集 A 到集 B)是满射当且仅当在 B 中的每个 y 存在至少一个在 A 中的 x 满足 f(x) = y, 就是说, f 是满射当且仅当 f(A) = B。

值域里的每个元素都至少有一个定义域元素与之对应。

例子:函数 f(x) = 2x 从自然数集\(N\)到非负偶数是个满射函数。

但 f(x) = 2x 从自然数集\(N\)\(N\)不是满射,因为没有一个自然数\(N\)可以被这个函数映射到 3。

3. 双射(Bijective)

函数 f(从 A 集到 B 集)是双射,若每个 B 中的 y 都有唯一的一个(而没有另外一个) A 集中的 x 满足 f(x) = y

或者说:当单射和满射都成立时,f 是双射。

例子: 函数 \(f(x) = x^2\) 从正实数到正实数是单射,也是满射,所以它是双射。

但从实数集\(R\)就不是,因为f(2)=4,并且f(-2)=4

II. 同态&同构

对于向量空间\(V,W\),若有映射\(\Phi :V→W\)满足如下条件,则我们称\(\Phi\)线性映射(linear mapping)(或者向量空间同态(vector space Homomorphism)linear transform):
\[\forall{x,y}∈V, \lambda,\psi∈R:\Phi(\lambda x+\psi y)=\lambda \Phi(x) + \psi \Phi(y)\]

基于上面已经介绍了的映射的概念,我们现在可以更好地直观理解同态和同构的定义,它们分别如下:

  • \(\Ph
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值