Question 1
Mixed Strategy Nash Equilibrium
1\ 2 | Left | Right |
Left | 4,2 | 5,1 |
Right | 6,0 | 3,3 |
Your Answer | Score | Explanation | |
---|---|---|---|
1.00 | |||
Total | 1.00 / 1.00 |
Question Explanation
(b) is true.
(b) is true.
- In a mixed strategy equilibrium in this game both players must mix and so 2 must be indifferent between Left and Right.
- Left gives 2 an expected payoff: 2p+0(1−p)
- Right gives 2 an expected payoff: 1p+3(1−p)
- Setting these two payoffs to be equal leads to p=3/4 .
Question 2
Comparative Statics
1\ 2 | Left | Right |
Left | x,2 | 0,0 |
Right | 0,0 | 2,2 |
Your Answer | Score | Explanation | |
---|---|---|---|
1.00 | |||
Total | 1.00 / 1.00 |
Question Explanation
(a) is true.
(a) is true.
- In a mixed strategy equilibrium, 1 and 2 are each indifferent between Left and Right.
- For p:
- Left gives 2 an expected payoff: 2p
- Right gives 2 an expected payoff: 2(1−p)
- These two payoffs are equal, thus we have p=1/2 .
- For q : setting the Left expected payoff equal to the Right leads to Xq=2(1−q) , thus q=2/(X+2) , which decreases in X.
Question 3
Employment
- There are 2 firms, each advertising an available job opening.
- Firms offer different wages: Firm 1 offers w1=4 and 2 offers w2=6 .
- There are two unemployed workers looking for jobs. They simultaneously apply to either of the firms.
- If only one worker applies to a firm, then he/she gets the job
- If both workers apply to the same firm, the firm hires a worker at random and the other worker remains unemployed (and receives a payoff of 0).
Your Answer | Score | Explanation | |
---|---|---|---|
1.00 | |||
Total | 1.00 / 1.00 |
Question Explanation
(d) is correct.
(d) is correct.
- In a mixed strategy equilibrium, worker 1 and 2 must be indifferent between applying to firm 1 and 2.
- For a given p , worker 2's indifference condition is given by 2p+4(1−p)=6p+3(1−p) .
- Similarly, for a given q , worker 1's indifference condition is given by 2q+4(1−q)=6q+3(1−q) .
- Both conditions are satisfied when p=q=1/5 .
Question 4
Treasure
- A king is deciding where to hide his treasure, while a pirate is deciding where to look for the treasure.
- The payoff to the king from successfully hiding the treasure is 5 and from having it found is 2.
- The payoff to the pirate from finding the treasure is 9 and from not finding it is 4.
- The king can hide it in location X, Y or Z.
Suppose the pirate has two pure strategies: inspect both X and Y (they are close together), or just inspect Z (it is far away). Find a mixed strategy Nash equilibrium where
p
is the probability the treasure is hidden in X or Y and
1−p
that it is hidden in Z (treat the king as having two strategies) and
q
is the probability that the pirate inspects X and Y:
Your Answer | Score | Explanation | |
---|---|---|---|
1.00 | |||
Total | 1.00 / 1.00 |
Question Explanation
(a) is true.
(a) is true.
- There is no pure strategy equilibrium, so in a mixed strategy equilibrium, both players are indifferent among their strategies.
- For p:
- Inspecting X \& Y gives pirate a payoff: 9p+4(1−p)
- Inspecting Z gives pirate a payoff: 4p+9(1−p)
- These two payoffs are equal, thus we have p=1/2 .
- For q : indifference for the king requires that 5q+2(1−q)=2q+5(1−q) , thus q=1/2 .
Question 5
Treasure
- A king is deciding where to hide his treasure, while a pirate is deciding where to look for the treasure.
- The payoff to the king from successfully hiding the treasure is 5 and from having it found is 2.
- The payoff to the pirate from finding the treasure is 9 and from not finding it is 4.
- The king can hide it in location X, Y or Z.
Suppose instead that the pirate can investigate any two locations, so has three pure strategies: inspect XY or YZ or XZ. Find a mixed strategy Nash equilibrium where the king mixes over three locations (X, Y, Z) and the pirate mixes over (XY, YZ, XZ). The following probabilities (king), (pirate) form an equilibrium:
Your Answer | Score | Explanation | |
---|---|---|---|
1.00 | |||
Total | 1.00 / 1.00 |
Question Explanation
(d) is true.
(d) is true.
- Check (a):
- Pirate inspects (XY, YZ, XZ) with prob (4/9, 4/9, 1/9);
- Y is inspected with prob 8/9 while X (or Z) is inspected with prob 5/9;
- King prefers to hide in X or Z, which contradicts the fact that in a mixed strategy equilibrium, king should be indifferent.
- Similarly, you can verify that (b) and (c) are not equilibria in the same way.
- In (d), every place is chosen by king and inspected by pirate with equal probability and they are indifferent between all strategies.