算法
阿困
别人笑我忒疯癫
展开
-
决策树 ID3算法
1 简介 决策树学习是一种逼近离散值目标函数的方法,在这种学习到的函数被表示为一棵决策树。 2 决策树表示 决策树通过把实例从根节点排列到某个叶子结点来分类实例,叶子结点即为实例所属的分类。树上的每一个结点指定了对实例的某个属性的测试,并且该结点的每一个后续分支对应于该属性的一个可能值。 分类实例的方法是从这棵树的根节点开始,测试这个结点指定的属性,然后按照给定实例的该属性值对应转载 2014-10-15 16:34:18 · 1784 阅读 · 0 评论 -
最近点问题
求点集中的最近点对有以下两种方法: 设p1=(x1, y1), p2=(x2, y2), …, pn=(xn, yn)是平面上n个点构成的集合S,设计算法找出集合S中距离最近的点对。 1、蛮力法(适用于点的数目比较小的情况下) 1)算法描述:已知集合S中有n个点,一共可以组成n(n-1)/2对点对,蛮力法就是对这n(n-1)/2对点对逐对进行距离计算,通过循环转载 2014-10-14 21:29:15 · 944 阅读 · 0 评论 -
大津法---OTSU算法
OPENCV的二值化操作中,有一种“大津阈值处理”的方法,使用函数cvThreshold(image,image2,0,255,CV_THRESH_OTSU) 实现,该函数就会使用大律法OTSU得到的全局自适应阈值来进行二值化图片,而参数中的threshold不再起作用。 OTSU算法 OTSU算法也称最大类间差法,有时也称之为大津算法,由大津于1979年提出,被认为是图像分割中阈值选取的转载 2014-05-29 20:18:37 · 23303 阅读 · 0 评论 -
卡尔曼滤波器 opencv
背景: 卡尔曼滤波是一种高效率的递归滤波器(自回归滤波器), 它能够从一系列的不完全及包含噪声的测量中,估计动态系统的状态。卡尔曼滤波的一个典型实例是从一组有限的,包含噪声的,对物体位置的观察序列(可能有偏差)预测出物体的位置的坐标及速度。 这种滤波方法以它的发明者鲁道夫.E.卡尔曼(Rudolph E. Kalman)命名,但是根据文献可知实际上Peter Swerling在转载 2015-05-12 13:18:35 · 12614 阅读 · 1 评论