- 首先在V_m∩V_d的范围内采样速度:
- allowable_v = generateWindow(robotV, robotModel)
- allowable_w = generateWindow(robotW, robotModel)
- 然后根据能否及时刹车剔除不安全的速度:
- for each v in allowable_v
- for each w in allowable_w
- dist = find_dist(v,w,laserscan,robotModel)
- breakDist = calculateBreakingDistance(v)//刹车距离
- if (dist > breakDist) //如果能够及时刹车,该对速度可接收
- 如果这组速度可接受,接下来利用评价函数对其评价,找到最优的速度组
- 来源:http://adrianboeing.blogspot.com/2012/05/dynamic-window-algorithm-motion.html
- BEGIN DWA(robotPose,robotGoal,robotModel)
- laserscan = readScanner()
- allowable_v = generateWindow(robotV, robotModel)
- allowable_w = generateWindow(robotW, robotModel)
- for each v in allowable_v
- for each w in allowable_w
- dist = find_dist(v,w,laserscan,robotModel)
- breakDist = calculateBreakingDistance(v)
- if (dist > breakDist) //can stop in time
- heading = hDiff(robotPose,goalPose, v,w)
- //clearance与原论文稍不一样
- clearance = (dist-breakDist)/(dmax - breakDist)
- cost = costFunction(heading,clearance, abs(desired_v - v))
- if (cost > optimal)
- best_v = v
- best_w = w
- optimal = cost
- set robot trajectory to best_v, best_w
- END
(转载请注明作者和出处:http://blog.csdn.net/heyijia0327 未经允许请勿用于商业用途)
参考:
dwa:
1.Fox.《The Dynamic Window Approach To CollisionAvoidance》
2.MarijaSeder. 《dynamic window based approach tomobile robot motion control in the presence of moving obstacles》
3.http://adrianboeing.blogspot.com/2012/05/dynamic-window-algorithm-motion.html
运动模型:
4. http://adrianboeing.blogspot.com.au/2010/09/circular-motion-in-2d-for-graphics-and.html
5.https://www.cs.princeton.edu/courses/archive/fall11/cos495/COS495-Lecture5-Odometry.pdf
6.http://rossum.sourceforge.net/papers/DiffSteer/
最后贴出matlab仿真代码:
- % -------------------------------------------------------------------------
- %
- % File : DynamicWindowApproachSample.m
- %
- % Discription : Mobile Robot Motion Planning with Dynamic Window Approach
- %
- % Environment : Matlab
- %
- % Author : Atsushi Sakai
- %
- % Copyright (c): 2014 Atsushi Sakai
- %
- % License : Modified BSD Software License Agreement
- % -------------------------------------------------------------------------
- function [] = DynamicWindowApproachSample()
- close all;
- clear all;
- disp('Dynamic Window Approach sample program start!!')
- x=[0 0 pi/2 0 0]';% 机器人的初期状态[x(m),y(m),yaw(Rad),v(m/s),w(rad/s)]
- goal=[10,10];% 目标点位置 [x(m),y(m)]
- % 障碍物位置列表 [x(m) y(m)]
- % obstacle=[0 2;
- % 4 2;
- % 4 4;
- % 5 4;
- % 5 5;
- % 5 6;
- % 5 9
- % 8 8
- % 8 9
- % 7 9];
- obstacle=[0 2;
- 4 2;
- 4 4;
- 5 4;
- 5 5;
- 5 6;
- 5 9
- 8 8
- 8 9
- 7 9
- 6 5
- 6 3
- 6 8
- 6 7
- 7 4
- 9 8
- 9 11
- 9 6];
- obstacleR=0.5;% 冲突判定用的障碍物半径
- global dt; dt=0.1;% 时间[s]
- % 机器人运动学模型
- % 最高速度m/s],最高旋转速度[rad/s],加速度[m/ss],旋转加速度[rad/ss],
- % 速度分辨率[m/s],转速分辨率[rad/s]]
- Kinematic=[1.0,toRadian(20.0),0.2,toRadian(50.0),0.01,toRadian(1)];
- % 评价函数参数 [heading,dist,velocity,predictDT]
- evalParam=[0.05,0.2,0.1,3.0];
- area=[-1 11 -1 11];% 模拟区域范围 [xmin xmax ymin ymax]
- % 模拟实验的结果
- result.x=[];
- tic;
- % movcount=0;
- % Main loop
- for i=1:5000
- % DWA参数输入
- [u,traj]=DynamicWindowApproach(x,Kinematic,goal,evalParam,obstacle,obstacleR);
- x=f(x,u);% 机器人移动到下一个时刻
- % 模拟结果的保存
- result.x=[result.x; x'];
- % 是否到达目的地
- if norm(x(1:2)-goal')<0.5
- disp('Arrive Goal!!');break;
- end
- %====Animation====
- hold off;
- ArrowLength=0.5;%
- % 机器人
- quiver(x(1),x(2),ArrowLength*cos(x(3)),ArrowLength*sin(x(3)),'ok');hold on;
- plot(result.x(:,1),result.x(:,2),'-b');hold on;
- plot(goal(1),goal(2),'*r');hold on;
- plot(obstacle(:,1),obstacle(:,2),'*k');hold on;
- % 探索轨迹
- if ~isempty(traj)
- for it=1:length(traj(:,1))/5
- ind=1+(it-1)*5;
- plot(traj(ind,:),traj(ind+1,:),'-g');hold on;
- end
- end
- axis(area);
- grid on;
- drawnow;
- %movcount=movcount+1;
- %mov(movcount) = getframe(gcf);%
- end
- toc
- %movie2avi(mov,'movie.avi');
- function [u,trajDB]=DynamicWindowApproach(x,model,goal,evalParam,ob,R)
- % Dynamic Window [vmin,vmax,wmin,wmax]
- Vr=CalcDynamicWindow(x,model);
- % 评价函数的计算
- [evalDB,trajDB]=Evaluation(x,Vr,goal,ob,R,model,evalParam);
- if isempty(evalDB)
- disp('no path to goal!!');
- u=[0;0];return;
- end
- % 各评价函数正则化
- evalDB=NormalizeEval(evalDB);
- % 最终评价函数的计算
- feval=[];
- for id=1:length(evalDB(:,1))
- feval=[feval;evalParam(1:3)*evalDB(id,3:5)'];
- end
- evalDB=[evalDB feval];
- [maxv,ind]=max(feval);% 最优评价函数
- u=evalDB(ind,1:2)';%
- function [evalDB,trajDB]=Evaluation(x,Vr,goal,ob,R,model,evalParam)
- %
- evalDB=[];
- trajDB=[];
- for vt=Vr(1):model(5):Vr(2)
- for ot=Vr(3):model(6):Vr(4)
- % 轨迹推测; 得到 xt: 机器人向前运动后的预测位姿; traj: 当前时刻 到 预测时刻之间的轨迹
- [xt,traj]=GenerateTrajectory(x,vt,ot,evalParam(4),model); %evalParam(4),前向模拟时间;
- % 各评价函数的计算
- heading=CalcHeadingEval(xt,goal);
- dist=CalcDistEval(xt,ob,R);
- vel=abs(vt);
- % 制动距离的计算
- stopDist=CalcBreakingDist(vel,model);
- if dist>stopDist %
- evalDB=[evalDB;[vt ot heading dist vel]];
- trajDB=[trajDB;traj];
- end
- end
- end
- function EvalDB=NormalizeEval(EvalDB)
- % 评价函数正则化
- if sum(EvalDB(:,3))~=0
- EvalDB(:,3)=EvalDB(:,3)/sum(EvalDB(:,3));
- end
- if sum(EvalDB(:,4))~=0
- EvalDB(:,4)=EvalDB(:,4)/sum(EvalDB(:,4));
- end
- if sum(EvalDB(:,5))~=0
- EvalDB(:,5)=EvalDB(:,5)/sum(EvalDB(:,5));
- end
- function [x,traj]=GenerateTrajectory(x,vt,ot,evaldt,model)
- % 轨迹生成函数
- % evaldt:前向模拟时间; vt、ot当前速度和角速度;
- global dt;
- time=0;
- u=[vt;ot];% 输入值
- traj=x;% 机器人轨迹
- while time<=evaldt
- time=time+dt;% 时间更新
- x=f(x,u);% 运动更新
- traj=[traj x];
- end
- function stopDist=CalcBreakingDist(vel,model)
- % 根据运动学模型计算制动距离,这个制动距离并没有考虑旋转速度,不精确吧!!!
- global dt;
- stopDist=0;
- while vel>0
- stopDist=stopDist+vel*dt;% 制动距离的计算
- vel=vel-model(3)*dt;%
- end
- function dist=CalcDistEval(x,ob,R)
- % 障碍物距离评价函数
- dist=100;
- for io=1:length(ob(:,1))
- disttmp=norm(ob(io,:)-x(1:2)')-R;%僷僗偺埵抲偲忈奞暔偲偺僲儖儉岆嵎傪寁嶼
- if dist>disttmp% 离障碍物最小的距离
- dist=disttmp;
- end
- end
- % 障碍物距离评价限定一个最大值,如果不设定,一旦一条轨迹没有障碍物,将太占比重
- if dist>=2*R
- dist=2*R;
- end
- function heading=CalcHeadingEval(x,goal)
- % heading的评价函数计算
- theta=toDegree(x(3));% 机器人朝向
- goalTheta=toDegree(atan2(goal(2)-x(2),goal(1)-x(1)));% 目标点的方位
- if goalTheta>theta
- targetTheta=goalTheta-theta;% [deg]
- else
- targetTheta=theta-goalTheta;% [deg]
- end
- heading=180-targetTheta;
- function Vr=CalcDynamicWindow(x,model)
- %
- global dt;
- % 车子速度的最大最小范围
- Vs=[0 model(1) -model(2) model(2)];
- % 根据当前速度以及加速度限制计算的动态窗口
- Vd=[x(4)-model(3)*dt x(4)+model(3)*dt x(5)-model(4)*dt x(5)+model(4)*dt];
- % 最终的Dynamic Window
- Vtmp=[Vs;Vd];
- Vr=[max(Vtmp(:,1)) min(Vtmp(:,2)) max(Vtmp(:,3)) min(Vtmp(:,4))];
- function x = f(x, u)
- % Motion Model
- % u = [vt; wt];当前时刻的速度、角速度
- global dt;
- F = [1 0 0 0 0
- 0 1 0 0 0
- 0 0 1 0 0
- 0 0 0 0 0
- 0 0 0 0 0];
- B = [dt*cos(x(3)) 0
- dt*sin(x(3)) 0
- 0 dt
- 1 0
- 0 1];
- x= F*x+B*u;
- function radian = toRadian(degree)
- % degree to radian
- radian = degree/180*pi;
- function degree = toDegree(radian)
- % radian to degree
- degree = radian/pi*180;