本文借鉴以下文章
http://foundy.blog.163.com/blog/static/2633834420090212202156/
http://foundy.blog.163.com/blog/static/2633834420100150439615/
matlab版本:matlab2010b
第一步:利用matlab模糊控制工具箱设计模糊控制器。
1、在matlab命令窗口中输入 fuzzy ,产生如下窗口。
2、确定模糊控制器结构,即根据具体的系统确定输入、输出量。
这里我们可以选取标准的二维控制结构,即输入为误差e和误差变化ec,输出为控制量u。输入变量的添加通过 Edit -> Add Variable -> Input 实现。
3、语言值及隶属函数的确定。
首先我们要确定描述输入输出变量语言值的模糊子集,如{NB,NM,NS,ZE,PS,PM,PB},并设置输入输出变量的论域,例如我们设置误差E、误差变化EC的论域为[-6 6],控制量U的论域为[-10 10];然后为模糊语言变量选取相应的隶属度函数。通过 Edit -> Membership Functions 打开隶属度函数编辑器,然后分别对输入输出变量定义论域范围,添加隶属函数,以E为例,设置论域范围为[-6 6],添加隶属函数的个数为7。(注:隶属度函数编辑器初始时已为每个变量定义了3个隶属函数,再通过 Edit -> Add MFs 添加隶属函数时,个数选择4即可)
4、模糊控制规则的制定。
对于我们这个二维控制结构以及相应的输入模糊集,我们可以制定49条模糊控制规则。
5、解模糊。
模糊控制器的输出量是一个模糊集合,通过解模糊化方法判决出一个确切的精确量,解模糊化方法很多,我们这里选取重心法。
6、保存建立的模糊控制器。
File -> Export -> To File,文件名为 fuzzy_control。
第二步:建立Simulink模型。
1、在matlab命令窗口中输入simulink,产生如下窗口。
2、新建模糊控制器模型,样式如下。
3、在matlab命令窗口下输入 fuzzy = readfis('fuzzy_control') ,将之前建立的模糊控制器加载到工作空间,并将Fuzzy Logic Contrtoller的参数设置为fuzzy。
4、保存该模型,命名为 fuzzy_model
第三步:系统测试界面的设置。
1、通过 Tools -> System Test -> Launch System Test 进入系统测试界面。
2、添加测试模型。
鼠标选中Main Test ,菜单栏 Insert -> Test Element -> Simulink ,选择第二步中建立的模型 fuzzy_model 。
3、变量定义。
在Test Vectors 项里定义两个测试向量,变量名分别为 input1、input2,input1 = [-6:1:6], input2 = [-6:1:6];在Test Variables 里定义测试变量,变量名为output。
4、变量映射。
把测试向量input1、input2分别映射到模糊控制器的输入口 in1、in2,做为输入测试信号。把测试变量 output 映射到模糊控制器输出口out1。设置后的界面如下:
输入测试向量到模糊模型输入口映射:
模糊控制器输出保存映射:
5、测试数据保存。
在测试界面点Save Results项,设置如下:
6、运行测试,注意在Main Test(169 Iterations)(169次迭代,运算代价),等待测试结束。
第四步:模糊控制查询表的生成
1、系统测试结果保存在 stresults.ResultsDataSet.output 中,为169*1 cell的单元数组。(注:单元cell为 [n*1 double] 结构,表示系统被测试了n次)。
2、在matlab命令窗口下输入 test_data = stresults.ResultsDataSet.output ,将测试结果另存在变量 test_data 中。
3、测试结果格式转换。
由于所建的二维查询表为13行13列,所需的数据应该为13*13 double数组,但因为test_data为 169*1 cell 的单元数组,无法直接作为表格数据输入,因此需先进行格式转换。
在matlab命令窗口下输入 table_data = Cell2Array( test_data , 1 , 13 , 13 ) ,调用Cell2Array函数,取每个单元数组中的第一行元素,即第一次测试数据,返回结果保存在 table_data 中。
源码如下:
4、新建二维查询表模型,样式如下:
5、点开二维查询表进行如下设置:
6、点 Edit 按钮,即可查看所生成的表格。